Cargando…
Uncertainty-Aware Knowledge Distillation for Collision Identification of Collaborative Robots
Human-robot interaction has received a lot of attention as collaborative robots became widely utilized in many industrial fields. Among techniques for human-robot interaction, collision identification is an indispensable element in collaborative robots to prevent fatal accidents. This paper proposes...
Autores principales: | Kwon, Wookyong, Jin, Yongsik, Lee, Sang Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512717/ https://www.ncbi.nlm.nih.gov/pubmed/34640993 http://dx.doi.org/10.3390/s21196674 |
Ejemplares similares
-
Human-Aware Collaborative Robots in the Wild: Coping with Uncertainty in Activity Recognition
por: Yalçinkaya, Beril, et al.
Publicado: (2023) -
Multistructure-Based Collaborative Online Distillation
por: Gao, Liang, et al.
Publicado: (2019) -
Memory-Replay Knowledge Distillation
por: Wang, Jiyue, et al.
Publicado: (2021) -
Knowledge Fusion Distillation: Improving Distillation with Multi-scale Attention Mechanisms
por: Li, Linfeng, et al.
Publicado: (2023) -
Biocuration: Distilling data into knowledge
Publicado: (2018)