Cargando…
From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling
The behaviors and skills of models in many geosciences (e.g., hydrology and ecosystem sciences) strongly depend on spatially-varying parameters that need calibration. A well-calibrated model can reasonably propagate information from observations to unobserved variables via model physics, but traditi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514470/ https://www.ncbi.nlm.nih.gov/pubmed/34645796 http://dx.doi.org/10.1038/s41467-021-26107-z |