Cargando…
From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling
The behaviors and skills of models in many geosciences (e.g., hydrology and ecosystem sciences) strongly depend on spatially-varying parameters that need calibration. A well-calibrated model can reasonably propagate information from observations to unobserved variables via model physics, but traditi...
Autores principales: | Tsai, Wen-Ping, Feng, Dapeng, Pan, Ming, Beck, Hylke, Lawson, Kathryn, Yang, Yuan, Liu, Jiangtao, Shen, Chaopeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514470/ https://www.ncbi.nlm.nih.gov/pubmed/34645796 http://dx.doi.org/10.1038/s41467-021-26107-z |
Ejemplares similares
-
Integrated Geoscientific Surveys at the Church of Santa Maria della Lizza (Alezio, Italy)
por: De Giorgi, Lara, et al.
Publicado: (2021) -
Proceedings of the NATO Advanced Research Workshop on Three-Dimensional Modeling with Geoscientific Information Systems
por: Turner, A
Publicado: (1992) -
Mind the Scales: Harnessing Spatial Big Data for Infectious Disease Surveillance and Inference
por: Lee, Elizabeth C., et al.
Publicado: (2016) -
Outstanding Geoscientific Sites in Periurban Areas: the Case of Roses Lighthouse Geosite (Cap de Creus, eastern Pyrenees)
por: Druguet, Elena, et al.
Publicado: (2023) -
Challenges to rutile-based geoscientific tools: low-temperature polymorphic TiO(2) transformations and corresponding reactive pathways
por: Pinto, André Jorge, et al.
Publicado: (2020)