Cargando…
DeepCellState: An autoencoder-based framework for predicting cell type specific transcriptional states induced by drug treatment
Drug treatment induces cell type specific transcriptional programs, and as the number of combinations of drugs and cell types grows, the cost for exhaustive screens measuring the transcriptional drug response becomes intractable. We developed DeepCellState, a deep learning autoencoder-based framewor...
Autores principales: | Umarov, Ramzan, Li, Yu, Arner, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519465/ https://www.ncbi.nlm.nih.gov/pubmed/34610009 http://dx.doi.org/10.1371/journal.pcbi.1009465 |
Ejemplares similares
-
ReFeaFi: Genome-wide prediction of regulatory elements driving transcription initiation
por: Umarov, Ramzan, et al.
Publicado: (2021) -
Cross-modal autoencoder framework learns holistic representations of cardiovascular state
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2023) -
Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis
por: Chen, Yanshuo, et al.
Publicado: (2022) -
Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks
por: Umarov, Ramzan Kh., et al.
Publicado: (2017) -
Prediction of Drug-Likeness Using Deep Autoencoder Neural Networks
por: Hu, Qiwan, et al.
Publicado: (2018)