Cargando…
p38 MAPK‐mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta‐induced neuronal stress in Alzheimer's disease
MicroRNAs (miRNAs) are small noncoding RNAs ubiquitously expressed in the brain and regulate gene expression at the post‐transcriptional level. The nuclear RNase III enzyme Drosha initiates the maturation process of miRNAs in the nucleus. Strong evidence suggests that dysregulation of miRNAs is invo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521488/ https://www.ncbi.nlm.nih.gov/pubmed/34528746 http://dx.doi.org/10.1111/acel.13434 |
_version_ | 1784584910033387520 |
---|---|
author | Xu, Haidong Liu, Xiaolei Li, Wenming Xi, Ye Su, Peng Meng, Bo Shao, Xiaoyun Tang, Beisha Yang, Qian Mao, Zixu |
author_facet | Xu, Haidong Liu, Xiaolei Li, Wenming Xi, Ye Su, Peng Meng, Bo Shao, Xiaoyun Tang, Beisha Yang, Qian Mao, Zixu |
author_sort | Xu, Haidong |
collection | PubMed |
description | MicroRNAs (miRNAs) are small noncoding RNAs ubiquitously expressed in the brain and regulate gene expression at the post‐transcriptional level. The nuclear RNase III enzyme Drosha initiates the maturation process of miRNAs in the nucleus. Strong evidence suggests that dysregulation of miRNAs is involved in many neurological disorders including Alzheimer's disease (AD). Dysfunction of miRNA biogenesis components may be involved in the processes of those diseases. However, the role of Drosha in AD remains unknown. By using immunohistochemistry, biochemistry, and subcellular fractionation methods, we show here that the level of Drosha protein was significantly lower in the postmortem brain of human AD patients as well as in the transgenic rat model of AD. Interestingly, Drosha level was specifically reduced in neurons of the cortex and hippocampus but not in the cerebellum in the AD brain samples. In primary cortical neurons, amyloid‐beta (Aβ) oligomers caused a p38 MAPK‐dependent phosphorylation of Drosha, leading to its redistribution from the nucleus to the cytoplasm and a decrease in its level. This loss of Drosha function preceded Aβ‐induced neuronal death. Importantly, inhibition of p38 MAPK activity or overexpression of Drosha protected neurons from Aβ oligomers‐induced apoptosis. Taken together, these results establish a role for p38 MAPK‐Drosha pathway in modulating neuronal viability under Aβ oligomers stress condition and implicate loss of Drosha as a key molecular change in the pathogenesis of AD. |
format | Online Article Text |
id | pubmed-8521488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85214882021-10-25 p38 MAPK‐mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta‐induced neuronal stress in Alzheimer's disease Xu, Haidong Liu, Xiaolei Li, Wenming Xi, Ye Su, Peng Meng, Bo Shao, Xiaoyun Tang, Beisha Yang, Qian Mao, Zixu Aging Cell Original Papers MicroRNAs (miRNAs) are small noncoding RNAs ubiquitously expressed in the brain and regulate gene expression at the post‐transcriptional level. The nuclear RNase III enzyme Drosha initiates the maturation process of miRNAs in the nucleus. Strong evidence suggests that dysregulation of miRNAs is involved in many neurological disorders including Alzheimer's disease (AD). Dysfunction of miRNA biogenesis components may be involved in the processes of those diseases. However, the role of Drosha in AD remains unknown. By using immunohistochemistry, biochemistry, and subcellular fractionation methods, we show here that the level of Drosha protein was significantly lower in the postmortem brain of human AD patients as well as in the transgenic rat model of AD. Interestingly, Drosha level was specifically reduced in neurons of the cortex and hippocampus but not in the cerebellum in the AD brain samples. In primary cortical neurons, amyloid‐beta (Aβ) oligomers caused a p38 MAPK‐dependent phosphorylation of Drosha, leading to its redistribution from the nucleus to the cytoplasm and a decrease in its level. This loss of Drosha function preceded Aβ‐induced neuronal death. Importantly, inhibition of p38 MAPK activity or overexpression of Drosha protected neurons from Aβ oligomers‐induced apoptosis. Taken together, these results establish a role for p38 MAPK‐Drosha pathway in modulating neuronal viability under Aβ oligomers stress condition and implicate loss of Drosha as a key molecular change in the pathogenesis of AD. John Wiley and Sons Inc. 2021-09-16 2021-10 /pmc/articles/PMC8521488/ /pubmed/34528746 http://dx.doi.org/10.1111/acel.13434 Text en © 2021 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Xu, Haidong Liu, Xiaolei Li, Wenming Xi, Ye Su, Peng Meng, Bo Shao, Xiaoyun Tang, Beisha Yang, Qian Mao, Zixu p38 MAPK‐mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta‐induced neuronal stress in Alzheimer's disease |
title | p38 MAPK‐mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta‐induced neuronal stress in Alzheimer's disease |
title_full | p38 MAPK‐mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta‐induced neuronal stress in Alzheimer's disease |
title_fullStr | p38 MAPK‐mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta‐induced neuronal stress in Alzheimer's disease |
title_full_unstemmed | p38 MAPK‐mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta‐induced neuronal stress in Alzheimer's disease |
title_short | p38 MAPK‐mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta‐induced neuronal stress in Alzheimer's disease |
title_sort | p38 mapk‐mediated loss of nuclear rnase iii enzyme drosha underlies amyloid beta‐induced neuronal stress in alzheimer's disease |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521488/ https://www.ncbi.nlm.nih.gov/pubmed/34528746 http://dx.doi.org/10.1111/acel.13434 |
work_keys_str_mv | AT xuhaidong p38mapkmediatedlossofnuclearrnaseiiienzymedroshaunderliesamyloidbetainducedneuronalstressinalzheimersdisease AT liuxiaolei p38mapkmediatedlossofnuclearrnaseiiienzymedroshaunderliesamyloidbetainducedneuronalstressinalzheimersdisease AT liwenming p38mapkmediatedlossofnuclearrnaseiiienzymedroshaunderliesamyloidbetainducedneuronalstressinalzheimersdisease AT xiye p38mapkmediatedlossofnuclearrnaseiiienzymedroshaunderliesamyloidbetainducedneuronalstressinalzheimersdisease AT supeng p38mapkmediatedlossofnuclearrnaseiiienzymedroshaunderliesamyloidbetainducedneuronalstressinalzheimersdisease AT mengbo p38mapkmediatedlossofnuclearrnaseiiienzymedroshaunderliesamyloidbetainducedneuronalstressinalzheimersdisease AT shaoxiaoyun p38mapkmediatedlossofnuclearrnaseiiienzymedroshaunderliesamyloidbetainducedneuronalstressinalzheimersdisease AT tangbeisha p38mapkmediatedlossofnuclearrnaseiiienzymedroshaunderliesamyloidbetainducedneuronalstressinalzheimersdisease AT yangqian p38mapkmediatedlossofnuclearrnaseiiienzymedroshaunderliesamyloidbetainducedneuronalstressinalzheimersdisease AT maozixu p38mapkmediatedlossofnuclearrnaseiiienzymedroshaunderliesamyloidbetainducedneuronalstressinalzheimersdisease |