Cargando…

HLA-C and KIR permutations influence chronic obstructive pulmonary disease risk

A role for hereditary influences in the susceptibility for chronic obstructive pulmonary disease (COPD) is widely recognized. Cytotoxic lymphocytes are implicated in COPD pathogenesis, and functions of these leukocytes are modulated by interactions between their killer cell Ig-like receptors (KIR) a...

Descripción completa

Detalles Bibliográficos
Autores principales: Mkorombindo, Takudzwa, Tran-Nguyen, Thi K., Yuan, Kaiyu, Zhang, Yingze, Xue, Jianmin, Criner, Gerard J., Kim, Young-il, Pilewski, Joseph M., Gaggar, Amit, Cho, Michael H., Sciurba, Frank C., Duncan, Steven R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525585/
https://www.ncbi.nlm.nih.gov/pubmed/34464355
http://dx.doi.org/10.1172/jci.insight.150187
Descripción
Sumario:A role for hereditary influences in the susceptibility for chronic obstructive pulmonary disease (COPD) is widely recognized. Cytotoxic lymphocytes are implicated in COPD pathogenesis, and functions of these leukocytes are modulated by interactions between their killer cell Ig-like receptors (KIR) and human leukocyte antigen–Class I (HLA–Class I) molecules on target cells. We hypothesized HLA–Class I and KIR inheritance affect risks for COPD. HLA–Class I alleles and KIR genotypes were defined by candidate gene analyses in multiple cohorts of patients with COPD (total n = 392) and control smokers with normal spirometry (total n = 342). Compared with controls, patients with COPD had overrepresentations of HLA-C*07 and activating KIR2DS1, with underrepresentations of HLA-C*12. Particular HLA-KIR permutations were synergistic; e.g., the presence of HLA-C*07 + KIR2DS1 + HLA-C12(null) versus HLAC*07(null) + KIR2DS1(null) + HLA-C12 was associated with COPD, especially among HLA-C1 allotype homozygotes. Cytotoxicity of COPD lymphocytes was more enhanced by KIR stimulation than those of controls and was correlated with lung function. These data show HLA-C and KIR polymorphisms strongly influence COPD susceptibility and highlight the importance of lymphocyte-mediated cytotoxicity in COPD pathogenesis. Findings here also indicate that HLA-KIR typing could stratify at-risk patients and raise possibilities that HLA-KIR axis modulation may have therapeutic potential.