Cargando…
Deep learning allows genome-scale prediction of Michaelis constants from structural features
The Michaelis constant K(M) describes the affinity of an enzyme for a specific substrate and is a central parameter in studies of enzyme kinetics and cellular physiology. As measurements of K(M) are often difficult and time-consuming, experimental estimates exist for only a minority of enzyme–substr...
Autores principales: | Kroll, Alexander, Engqvist, Martin K. M., Heckmann, David, Lercher, Martin J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525774/ https://www.ncbi.nlm.nih.gov/pubmed/34665809 http://dx.doi.org/10.1371/journal.pbio.3001402 |
Ejemplares similares
-
AI delivers Michaelis constants as fuel for genome-scale metabolic models
por: Antolin, Albert A., et al.
Publicado: (2021) -
Coloring coral larvae allows tracking of local dispersal and settlement
por: Doropoulos, Christopher, et al.
Publicado: (2022) -
A general model to predict small molecule substrates of enzymes based on machine and deep learning
por: Kroll, Alexander, et al.
Publicado: (2023) -
PopGenome: An Efficient Swiss Army Knife for Population Genomic Analyses in R
por: Pfeifer, Bastian, et al.
Publicado: (2014) -
Dating genomic variants and shared ancestry in population-scale sequencing data
por: Albers, Patrick K., et al.
Publicado: (2020)