Cargando…

Robust Tracking Control of the Euler–Lagrange System Based on Barrier Lyapunov Function and Self-Structuring Neural Networks

This article studies the robust tracking control problems of Euler–Lagrange (EL) systems with uncertainties. To enhance the robustness of the control systems, an asymmetric tan-type barrier Lyapunov function (ATBLF) is used to dynamic constraint position tracking errors. To deal with the problems of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yi, Ma, He, Wu, Weidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526255/
https://www.ncbi.nlm.nih.gov/pubmed/34675970
http://dx.doi.org/10.1155/2021/1277349
Descripción
Sumario:This article studies the robust tracking control problems of Euler–Lagrange (EL) systems with uncertainties. To enhance the robustness of the control systems, an asymmetric tan-type barrier Lyapunov function (ATBLF) is used to dynamic constraint position tracking errors. To deal with the problems of the system uncertainties, the self-structuring neural network (SSNN) is developed to estimate the unknown dynamics model and avoid the calculation burden. The robust compensator is designed to estimate and compensate neural network (NN) approximation errors and unknown disturbances. In addition, a relative threshold event-triggered strategy is introduced, which greatly saves communication resources. Under the proposed robust control scheme, tracking behavior can be implemented with disturbance and unknown dynamics of the EL systems. All signals in the closed-loop system are proved to be bounded by stability analysis, and the tracking error can converge to the neighborhood near the origin. The numerical simulation results show the effectiveness and the validity of the proposed robust control scheme.