Cargando…

Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive funct...

Descripción completa

Detalles Bibliográficos
Autores principales: Longo, Francesco, Mancini, Maria, Ibraheem, Pierre L., Aryal, Sameer, Mesini, Caterina, Patel, Jyoti C., Penhos, Elena, Rahman, Nazia, Mamcarz, Maggie, Santini, Emanuela, Rice, Margaret E., Klann, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526653/
https://www.ncbi.nlm.nih.gov/pubmed/33879865
http://dx.doi.org/10.1038/s41380-021-01099-w
_version_ 1784585909506670592
author Longo, Francesco
Mancini, Maria
Ibraheem, Pierre L.
Aryal, Sameer
Mesini, Caterina
Patel, Jyoti C.
Penhos, Elena
Rahman, Nazia
Mamcarz, Maggie
Santini, Emanuela
Rice, Margaret E.
Klann, Eric
author_facet Longo, Francesco
Mancini, Maria
Ibraheem, Pierre L.
Aryal, Sameer
Mesini, Caterina
Patel, Jyoti C.
Penhos, Elena
Rahman, Nazia
Mamcarz, Maggie
Santini, Emanuela
Rice, Margaret E.
Klann, Eric
author_sort Longo, Francesco
collection PubMed
description Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.
format Online
Article
Text
id pubmed-8526653
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-85266532022-01-16 Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function Longo, Francesco Mancini, Maria Ibraheem, Pierre L. Aryal, Sameer Mesini, Caterina Patel, Jyoti C. Penhos, Elena Rahman, Nazia Mamcarz, Maggie Santini, Emanuela Rice, Margaret E. Klann, Eric Mol Psychiatry Article Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure. 2021-11 2021-04-20 /pmc/articles/PMC8526653/ /pubmed/33879865 http://dx.doi.org/10.1038/s41380-021-01099-w Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Longo, Francesco
Mancini, Maria
Ibraheem, Pierre L.
Aryal, Sameer
Mesini, Caterina
Patel, Jyoti C.
Penhos, Elena
Rahman, Nazia
Mamcarz, Maggie
Santini, Emanuela
Rice, Margaret E.
Klann, Eric
Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function
title Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function
title_full Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function
title_fullStr Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function
title_full_unstemmed Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function
title_short Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function
title_sort cell-type-specific disruption of perk-eif2α signaling in dopaminergic neurons alters motor and cognitive function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526653/
https://www.ncbi.nlm.nih.gov/pubmed/33879865
http://dx.doi.org/10.1038/s41380-021-01099-w
work_keys_str_mv AT longofrancesco celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT mancinimaria celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT ibraheempierrel celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT aryalsameer celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT mesinicaterina celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT pateljyotic celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT penhoselena celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT rahmannazia celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT mamcarzmaggie celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT santiniemanuela celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT ricemargarete celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction
AT klanneric celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction