Cargando…
Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive funct...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526653/ https://www.ncbi.nlm.nih.gov/pubmed/33879865 http://dx.doi.org/10.1038/s41380-021-01099-w |
_version_ | 1784585909506670592 |
---|---|
author | Longo, Francesco Mancini, Maria Ibraheem, Pierre L. Aryal, Sameer Mesini, Caterina Patel, Jyoti C. Penhos, Elena Rahman, Nazia Mamcarz, Maggie Santini, Emanuela Rice, Margaret E. Klann, Eric |
author_facet | Longo, Francesco Mancini, Maria Ibraheem, Pierre L. Aryal, Sameer Mesini, Caterina Patel, Jyoti C. Penhos, Elena Rahman, Nazia Mamcarz, Maggie Santini, Emanuela Rice, Margaret E. Klann, Eric |
author_sort | Longo, Francesco |
collection | PubMed |
description | Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure. |
format | Online Article Text |
id | pubmed-8526653 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-85266532022-01-16 Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function Longo, Francesco Mancini, Maria Ibraheem, Pierre L. Aryal, Sameer Mesini, Caterina Patel, Jyoti C. Penhos, Elena Rahman, Nazia Mamcarz, Maggie Santini, Emanuela Rice, Margaret E. Klann, Eric Mol Psychiatry Article Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure. 2021-11 2021-04-20 /pmc/articles/PMC8526653/ /pubmed/33879865 http://dx.doi.org/10.1038/s41380-021-01099-w Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Longo, Francesco Mancini, Maria Ibraheem, Pierre L. Aryal, Sameer Mesini, Caterina Patel, Jyoti C. Penhos, Elena Rahman, Nazia Mamcarz, Maggie Santini, Emanuela Rice, Margaret E. Klann, Eric Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function |
title | Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function |
title_full | Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function |
title_fullStr | Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function |
title_full_unstemmed | Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function |
title_short | Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function |
title_sort | cell-type-specific disruption of perk-eif2α signaling in dopaminergic neurons alters motor and cognitive function |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526653/ https://www.ncbi.nlm.nih.gov/pubmed/33879865 http://dx.doi.org/10.1038/s41380-021-01099-w |
work_keys_str_mv | AT longofrancesco celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT mancinimaria celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT ibraheempierrel celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT aryalsameer celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT mesinicaterina celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT pateljyotic celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT penhoselena celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT rahmannazia celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT mamcarzmaggie celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT santiniemanuela celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT ricemargarete celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction AT klanneric celltypespecificdisruptionofperkeif2asignalingindopaminergicneuronsaltersmotorandcognitivefunction |