Cargando…
Fast activation maximization for molecular sequence design
BACKGROUND: Optimization of DNA and protein sequences based on Machine Learning models is becoming a powerful tool for molecular design. Activation maximization offers a simple design strategy for differentiable models: one-hot coded sequences are first approximated by a continuous representation, w...
Autores principales: | Linder, Johannes, Seelig, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527647/ https://www.ncbi.nlm.nih.gov/pubmed/34670493 http://dx.doi.org/10.1186/s12859-021-04437-5 |
Ejemplares similares
-
A Generative Neural Network for Maximizing Fitness and Diversity of Synthetic DNA and Protein Sequences
por: Linder, Johannes, et al.
Publicado: (2020) -
An expectation-maximization algorithm enables accurate ecological modeling using longitudinal microbiome sequencing data
por: Li, Chenhao, et al.
Publicado: (2019) -
Pairwise alignment of nucleotide sequences using maximal exact matches
por: Bayat, Arash, et al.
Publicado: (2019) -
International comparison of observation-specific spatial buffers: maximizing the ability to estimate physical activity
por: Frank, Lawrence D., et al.
Publicado: (2017) -
Ligand scaffold hopping combining 3D maximal substructure search and molecular similarity
por: Quintus, Flavien, et al.
Publicado: (2009)