Cargando…
Drug target inference by mining transcriptional data using a novel graph convolutional network framework
A fundamental challenge that arises in biomedicine is the need to characterize compounds in a relevant cellular context in order to reveal potential on-target or off-target effects. Recently, the fast accumulation of gene transcriptional profiling data provides us an unprecedented opportunity to exp...
Autores principales: | Zhong, Feisheng, Wu, Xiaolong, Yang, Ruirui, Li, Xutong, Wang, Dingyan, Fu, Zunyun, Liu, Xiaohong, Wan, XiaoZhe, Yang, Tianbiao, Fan, Zisheng, Zhang, Yinghui, Luo, Xiaomin, Chen, Kaixian, Zhang, Sulin, Jiang, Hualiang, Zheng, Mingyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Higher Education Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532448/ https://www.ncbi.nlm.nih.gov/pubmed/34677780 http://dx.doi.org/10.1007/s13238-021-00885-0 |
Ejemplares similares
-
An inductive graph neural network model for compound–protein interaction prediction based on a homogeneous graph
por: Wan, Xiaozhe, et al.
Publicado: (2022) -
Multi-instance learning of graph neural networks for aqueous pK(a) prediction
por: Xiong, Jiacheng, et al.
Publicado: (2021) -
MolFilterGAN: a progressively augmented generative adversarial network for triaging AI-designed molecules
por: Liu, Xiaohong, et al.
Publicado: (2023) -
A hybrid framework for improving uncertainty quantification in deep learning-based QSAR regression modeling
por: Wang, Dingyan, et al.
Publicado: (2021) -
Cocrystal Prediction of Bexarotene by Graph Convolution Network and Bioavailability Improvement
por: Xiao, Fu, et al.
Publicado: (2022)