Cargando…

Partial Replacement of Dietary Fat with Polyunsaturated Fatty Acids Attenuates the Lipopolysaccharide-Induced Hepatic Inflammation in Sprague-Dawley Rats Fed a High-Fat Diet

In this study, we investigated whether the partial replacement of dietary fat with polyunsaturated fatty acids (PUFAs) ameliorated the lipopolysaccharide (LPS)-induced hepatic inflammation in rats fed a high-fat diet. Male Sprague-Dawley rats were divided into three groups and provided each of the f...

Descripción completa

Detalles Bibliográficos
Autores principales: Son, Hee-Kyoung, Xiang, Huo, Park, Seohyun, Lee, Jisu, Lee, Jae-Joon, Jung, Sunyoon, Ha, Jung-Heun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535618/
https://www.ncbi.nlm.nih.gov/pubmed/34682732
http://dx.doi.org/10.3390/ijerph182010986
Descripción
Sumario:In this study, we investigated whether the partial replacement of dietary fat with polyunsaturated fatty acids (PUFAs) ameliorated the lipopolysaccharide (LPS)-induced hepatic inflammation in rats fed a high-fat diet. Male Sprague-Dawley rats were divided into three groups and provided each of the following diets: (1) high-fat diet (HFD), (2) HFD with perilla oil (PO), and (3) HFD with corn oil (CO). After 12 weeks of dietary intervention, the rats were intraperitoneally injected with LPS (5 mg/kg) from Escherichia coli O55:B5 or phosphate-buffered saline (PBS). Following LPS stimulation, serum insulin levels were increased, while PO and CO lowered the serum levels of glucose and insulin. In the liver, LPS increased the triglyceride levels, while PO and CO alleviated the LPS-induced hepatic triglyceride accumulation. In the LPS injected rats, the mRNA expression of genes related to inflammation and endoplasmic reticulum (ER) stress was attenuated by PO and CO in the liver. Furthermore, hepatic levels of proteins involved in the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase pathways, antioxidant response, and ER stress were lowered by PO- and CO-replacement. Therefore, the partial replacement of dietary fat with PUFAs alleviates LPS-induced hepatic inflammation during HFD consumption, which may decrease metabolic abnormalities.