Cargando…

Topoisomerase poisoning by the flavonoid nevadensin triggers DNA damage and apoptosis in human colon carcinoma HT29 cells

Nevadensin, an abundant polyphenol of basil, is reported to reduce alkenylbenzene DNA adduct formation. Furthermore, it has a wide spectrum of further pharmacological properties. The presented study focuses the impact of nevadensin on topoisomerases (TOPO) in vitro. Considering the DNA-intercalating...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Lena, Schütte, Larissa Rhonda Friederike, Bücksteeg, David, Alfke, Julian, Uebel, Thomas, Esselen, Melanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536574/
https://www.ncbi.nlm.nih.gov/pubmed/34635930
http://dx.doi.org/10.1007/s00204-021-03162-5
Descripción
Sumario:Nevadensin, an abundant polyphenol of basil, is reported to reduce alkenylbenzene DNA adduct formation. Furthermore, it has a wide spectrum of further pharmacological properties. The presented study focuses the impact of nevadensin on topoisomerases (TOPO) in vitro. Considering the DNA-intercalating properties of flavonoids, first, minor groove binding properties (IC(50) = 31.63 µM), as well as DNA intercalation (IC(50) = 296.91 µM) of nevadensin, was found. To determine potential in vitro effects on TOPO I and TOPO IIα, the relaxation and decatenation assay was performed in a concentration range of 1–500 µM nevadensin. A partial inhibition was detected for TOPO I at concentrations  ≥ 100 µM, whereas TOPO IIα activity is only inhibited at concentrations  ≥ 250 µM. To clarify the mode of action, the isolating in vivo complex of enzyme assay was carried out using human colon carcinoma HT29 cells. After 1 h of incubation, the amount of TOPO I linked to DNA was significantly increased by nevadensin (500 µM), why nevadensin was characterized as TOPO I poison. However, no effects on TOPO IIα were detected in the cellular test system. As a subsequent cellular response to TOPO I poisoning, a highly significant increase of DNA damage after 2 h and a decrease of cell viability after 48 h at the same concentration range were found. Furthermore, after 24 h of incubation a G(2)/M arrest was observed at concentrations ≥ 100 µM by flow cytometry. The analysis of cell death revealed that nevadensin induces the intrinsic apoptotic pathway via activation of caspase-9 and caspase-3. The results suggest that cell cycle disruption and apoptotic events play key roles in the cellular response to TOPO I poisoning caused by nevadensin in HT29 cells. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00204-021-03162-5.