Cargando…
Optimization of Synthesis of the Amino Lipid ECO for Effective Delivery of Nucleic Acids
Nucleic acids are promising for a variety of therapies, such as cancer therapy and the gene therapy of genetic disorders. The therapeutic efficacy of nucleic acids is reliant on the ability of their efficient delivery to the cytosol of the target cells. Amino lipids have been developed to aid in the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537419/ https://www.ncbi.nlm.nih.gov/pubmed/34681240 http://dx.doi.org/10.3390/ph14101016 |
_version_ | 1784588246646259712 |
---|---|
author | Schilb, Andrew L. Scheidt, Josef H. Vaidya, Amita M. Sun, Zhanhu Sun, Da Lee, Sangjoon Lu, Zheng-Rong |
author_facet | Schilb, Andrew L. Scheidt, Josef H. Vaidya, Amita M. Sun, Zhanhu Sun, Da Lee, Sangjoon Lu, Zheng-Rong |
author_sort | Schilb, Andrew L. |
collection | PubMed |
description | Nucleic acids are promising for a variety of therapies, such as cancer therapy and the gene therapy of genetic disorders. The therapeutic efficacy of nucleic acids is reliant on the ability of their efficient delivery to the cytosol of the target cells. Amino lipids have been developed to aid in the cytosolic delivery of nucleic acids. This work reports a new and efficient synthetic pathway for the lipid carrier, (1-aminoethyl) iminobis [N-(oleicylcysteinyl-1-amino-ethyl)propionamide] (ECO). The previous synthesis of the ECO was inefficient and presented poor product quality control. A solution-phase synthesis of the ECO was explored, and each intermediate product was characterized with better quality control. The ECO was synthesized with a relatively high yield and high purity. The formulations of the ECO nanoparticles were made with siRNA, miRNA, or plasmid DNA, and characterized. The transfection efficiency of the nanoparticles was evaluated in vitro over a range of N/P ratios. The nanoparticles were consistent in size with previous formulations and had primarily a positive zeta potential. The ECO/siLuc nanoparticles resulted in potent luciferase silencing with minimal cytotoxicity. The ECO/miR-200c nanoparticles mediated the efficient delivery of miR-200c into the target cells. The ECO/pCMV-GFP nanoparticles resulted in substantial GFP expression upon transfection. These results demonstrate that the solution-phase synthetic pathway produced pure ECO for the efficient intracellular delivery of nucleic acids without size limitation. |
format | Online Article Text |
id | pubmed-8537419 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85374192021-10-24 Optimization of Synthesis of the Amino Lipid ECO for Effective Delivery of Nucleic Acids Schilb, Andrew L. Scheidt, Josef H. Vaidya, Amita M. Sun, Zhanhu Sun, Da Lee, Sangjoon Lu, Zheng-Rong Pharmaceuticals (Basel) Technical Note Nucleic acids are promising for a variety of therapies, such as cancer therapy and the gene therapy of genetic disorders. The therapeutic efficacy of nucleic acids is reliant on the ability of their efficient delivery to the cytosol of the target cells. Amino lipids have been developed to aid in the cytosolic delivery of nucleic acids. This work reports a new and efficient synthetic pathway for the lipid carrier, (1-aminoethyl) iminobis [N-(oleicylcysteinyl-1-amino-ethyl)propionamide] (ECO). The previous synthesis of the ECO was inefficient and presented poor product quality control. A solution-phase synthesis of the ECO was explored, and each intermediate product was characterized with better quality control. The ECO was synthesized with a relatively high yield and high purity. The formulations of the ECO nanoparticles were made with siRNA, miRNA, or plasmid DNA, and characterized. The transfection efficiency of the nanoparticles was evaluated in vitro over a range of N/P ratios. The nanoparticles were consistent in size with previous formulations and had primarily a positive zeta potential. The ECO/siLuc nanoparticles resulted in potent luciferase silencing with minimal cytotoxicity. The ECO/miR-200c nanoparticles mediated the efficient delivery of miR-200c into the target cells. The ECO/pCMV-GFP nanoparticles resulted in substantial GFP expression upon transfection. These results demonstrate that the solution-phase synthetic pathway produced pure ECO for the efficient intracellular delivery of nucleic acids without size limitation. MDPI 2021-10-02 /pmc/articles/PMC8537419/ /pubmed/34681240 http://dx.doi.org/10.3390/ph14101016 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Technical Note Schilb, Andrew L. Scheidt, Josef H. Vaidya, Amita M. Sun, Zhanhu Sun, Da Lee, Sangjoon Lu, Zheng-Rong Optimization of Synthesis of the Amino Lipid ECO for Effective Delivery of Nucleic Acids |
title | Optimization of Synthesis of the Amino Lipid ECO for Effective Delivery of Nucleic Acids |
title_full | Optimization of Synthesis of the Amino Lipid ECO for Effective Delivery of Nucleic Acids |
title_fullStr | Optimization of Synthesis of the Amino Lipid ECO for Effective Delivery of Nucleic Acids |
title_full_unstemmed | Optimization of Synthesis of the Amino Lipid ECO for Effective Delivery of Nucleic Acids |
title_short | Optimization of Synthesis of the Amino Lipid ECO for Effective Delivery of Nucleic Acids |
title_sort | optimization of synthesis of the amino lipid eco for effective delivery of nucleic acids |
topic | Technical Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537419/ https://www.ncbi.nlm.nih.gov/pubmed/34681240 http://dx.doi.org/10.3390/ph14101016 |
work_keys_str_mv | AT schilbandrewl optimizationofsynthesisoftheaminolipidecoforeffectivedeliveryofnucleicacids AT scheidtjosefh optimizationofsynthesisoftheaminolipidecoforeffectivedeliveryofnucleicacids AT vaidyaamitam optimizationofsynthesisoftheaminolipidecoforeffectivedeliveryofnucleicacids AT sunzhanhu optimizationofsynthesisoftheaminolipidecoforeffectivedeliveryofnucleicacids AT sunda optimizationofsynthesisoftheaminolipidecoforeffectivedeliveryofnucleicacids AT leesangjoon optimizationofsynthesisoftheaminolipidecoforeffectivedeliveryofnucleicacids AT luzhengrong optimizationofsynthesisoftheaminolipidecoforeffectivedeliveryofnucleicacids |