Cargando…
Folium Sennae Increased the Bioavailability of Methotrexate through Modulation on MRP 2 and BCRP
Folium Sennae (FS), a popular laxative (Senna), contains polyphenolic anthranoids, whose conjugation metabolites are probable modulators of multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP). We suspected that the combined use of FS might alter the pharmacoki...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537691/ https://www.ncbi.nlm.nih.gov/pubmed/34681260 http://dx.doi.org/10.3390/ph14101036 |
Sumario: | Folium Sennae (FS), a popular laxative (Senna), contains polyphenolic anthranoids, whose conjugation metabolites are probable modulators of multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP). We suspected that the combined use of FS might alter the pharmacokinetics of various medicines transported by MRPs or BCRP. This study investigated the effect of FS on the pharmacokinetics of methotrexate (MTX), an anticancer drug and a probe substrate of MRPs/BCRP. Rats were orally administered MTX alone and with two dosage regimens of FS in a parallel design. The results show that 5.0 g/kg of FS significantly increased the AUC(0–2880), AUC(720–2880) and MRT of MTX by 45%, 102% and 42%, and the seventh dose of 2.5 g/kg of FS significantly enhanced the AUC(720–2880) and MRT by 78% and 42%, respectively. Mechanism studies indicated that the metabolites of FS (FSM) inhibited MRP 2 and BCRP. In conclusion, the combined use of FS increased the systemic exposure and MRT of MTX through inhibition on MRP 2 and BCRP. |
---|