Cargando…
Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains
Site-specific incorporation of non-canonical amino acids (ncAAs) into proteins has emerged as a universal tool for systems bioengineering at the interface of chemistry, biology, and technology. The diversification of the repertoire of the genetic code has been achieved for amino acids with long and/...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538471/ https://www.ncbi.nlm.nih.gov/pubmed/34681855 http://dx.doi.org/10.3390/ijms222011194 |
_version_ | 1784588513499414528 |
---|---|
author | Koch, Nikolaj G. Goettig, Peter Rappsilber, Juri Budisa, Nediljko |
author_facet | Koch, Nikolaj G. Goettig, Peter Rappsilber, Juri Budisa, Nediljko |
author_sort | Koch, Nikolaj G. |
collection | PubMed |
description | Site-specific incorporation of non-canonical amino acids (ncAAs) into proteins has emerged as a universal tool for systems bioengineering at the interface of chemistry, biology, and technology. The diversification of the repertoire of the genetic code has been achieved for amino acids with long and/or bulky side chains equipped with various bioorthogonal tags and useful spectral probes. Although ncAAs with relatively small side chains and similar properties are of great interest to biophysics, cell biology, and biomaterial science, they can rarely be incorporated into proteins. To address this gap, we report the engineering of PylRS variants capable of incorporating an entire library of aliphatic “small-tag” ncAAs. In particular, we performed mutational studies of a specific PylRS, designed to incorporate the shortest non-bulky ncAA (S-allyl-l-cysteine) possible to date and based on this knowledge incorporated aliphatic ncAA derivatives. In this way, we have not only increased the number of translationally active “small-tag” ncAAs, but also determined key residues responsible for maintaining orthogonality, while engineering the PylRS for these interesting substrates. Based on the known plasticity of PylRS toward different substrates, our approach further expands the reassignment capacities of this enzyme toward aliphatic amino acids with smaller side chains endowed with valuable functionalities. |
format | Online Article Text |
id | pubmed-8538471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85384712021-10-24 Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains Koch, Nikolaj G. Goettig, Peter Rappsilber, Juri Budisa, Nediljko Int J Mol Sci Article Site-specific incorporation of non-canonical amino acids (ncAAs) into proteins has emerged as a universal tool for systems bioengineering at the interface of chemistry, biology, and technology. The diversification of the repertoire of the genetic code has been achieved for amino acids with long and/or bulky side chains equipped with various bioorthogonal tags and useful spectral probes. Although ncAAs with relatively small side chains and similar properties are of great interest to biophysics, cell biology, and biomaterial science, they can rarely be incorporated into proteins. To address this gap, we report the engineering of PylRS variants capable of incorporating an entire library of aliphatic “small-tag” ncAAs. In particular, we performed mutational studies of a specific PylRS, designed to incorporate the shortest non-bulky ncAA (S-allyl-l-cysteine) possible to date and based on this knowledge incorporated aliphatic ncAA derivatives. In this way, we have not only increased the number of translationally active “small-tag” ncAAs, but also determined key residues responsible for maintaining orthogonality, while engineering the PylRS for these interesting substrates. Based on the known plasticity of PylRS toward different substrates, our approach further expands the reassignment capacities of this enzyme toward aliphatic amino acids with smaller side chains endowed with valuable functionalities. MDPI 2021-10-17 /pmc/articles/PMC8538471/ /pubmed/34681855 http://dx.doi.org/10.3390/ijms222011194 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Koch, Nikolaj G. Goettig, Peter Rappsilber, Juri Budisa, Nediljko Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains |
title | Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains |
title_full | Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains |
title_fullStr | Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains |
title_full_unstemmed | Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains |
title_short | Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains |
title_sort | engineering pyrrolysyl-trna synthetase for the incorporation of non-canonical amino acids with smaller side chains |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538471/ https://www.ncbi.nlm.nih.gov/pubmed/34681855 http://dx.doi.org/10.3390/ijms222011194 |
work_keys_str_mv | AT kochnikolajg engineeringpyrrolysyltrnasynthetasefortheincorporationofnoncanonicalaminoacidswithsmallersidechains AT goettigpeter engineeringpyrrolysyltrnasynthetasefortheincorporationofnoncanonicalaminoacidswithsmallersidechains AT rappsilberjuri engineeringpyrrolysyltrnasynthetasefortheincorporationofnoncanonicalaminoacidswithsmallersidechains AT budisanediljko engineeringpyrrolysyltrnasynthetasefortheincorporationofnoncanonicalaminoacidswithsmallersidechains |