Cargando…
Improved Lipophilicity and Aqueous Solubility Prediction with Composite Graph Neural Networks
The accurate prediction of molecular properties, such as lipophilicity and aqueous solubility, are of great importance and pose challenges in several stages of the drug discovery pipeline. Machine learning methods, such as graph-based neural networks (GNNs), have shown exceptionally good performance...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539502/ https://www.ncbi.nlm.nih.gov/pubmed/34684766 http://dx.doi.org/10.3390/molecules26206185 |