Cargando…
Clustering FunFams using sequence embeddings improves EC purity
MOTIVATION: Classifying proteins into functional families can improve our understanding of protein function and can allow transferring annotations within one family. For this, functional families need to be ‘pure’, i.e., contain only proteins with identical function. Functional Families (FunFams) cl...
Autores principales: | Littmann, Maria, Bordin, Nicola, Heinzinger, Michael, Schütze, Konstantin, Dallago, Christian, Orengo, Christine, Rost, Burkhard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545299/ https://www.ncbi.nlm.nih.gov/pubmed/33978744 http://dx.doi.org/10.1093/bioinformatics/btab371 |
Ejemplares similares
-
FunFam protein families improve residue level molecular function prediction
por: Scheibenreif, Linus, et al.
Publicado: (2019) -
Contrastive learning on protein embeddings enlightens midnight zone
por: Heinzinger, Michael, et al.
Publicado: (2022) -
New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures
por: Sillitoe, Ian, et al.
Publicado: (2013) -
Protein embeddings and deep learning predict binding residues for various ligand classes
por: Littmann, Maria, et al.
Publicado: (2021) -
Novel machine learning approaches revolutionize protein knowledge
por: Bordin, Nicola, et al.
Publicado: (2023)