Cargando…
The low-complexity domain of the FUS RNA binding protein self-assembles via the mutually exclusive use of two distinct cross-β cores
The low-complexity (LC) domain of the fused in sarcoma (FUS) RNA binding protein self-associates in a manner causing phase separation from an aqueous environment. Incubation of the FUS LC domain under physiologically normal conditions of salt and pH leads to rapid formation of liquid-like droplets t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545455/ https://www.ncbi.nlm.nih.gov/pubmed/34654750 http://dx.doi.org/10.1073/pnas.2114412118 |
Sumario: | The low-complexity (LC) domain of the fused in sarcoma (FUS) RNA binding protein self-associates in a manner causing phase separation from an aqueous environment. Incubation of the FUS LC domain under physiologically normal conditions of salt and pH leads to rapid formation of liquid-like droplets that mature into a gel-like state. Both examples of phase separation have enabled reductionist biochemical assays allowing discovery of an N-terminal region of 57 residues that assembles into a labile, cross-β structure. Here we provide evidence of a nonoverlapping, C-terminal region of the FUS LC domain that also forms specific cross-β interactions. We propose that biologic function of the FUS LC domain may operate via the mutually exclusive use of these N- and C-terminal cross-β cores. Neurodegenerative disease–causing mutations in the FUS LC domain are shown to imbalance the two cross-β cores, offering an unanticipated concept of LC domain function and dysfunction. |
---|