Cargando…
Integrating single cell sequencing with a spatial quantitative systems pharmacology model spQSP for personalized prediction of triple-negative breast cancer immunotherapy response
Response to cancer immunotherapies depends on the complex and dynamic interactions between T cell recognition and killing of cancer cells that are counteracted through immunosuppressive pathways in the tumor microenvironment. Therefore, while measurements such as tumor mutational burden provide biom...
Autores principales: | Zhang, Shuming, Gong, Chang, Ruiz-Martinez, Alvaro, Wang, Hanwen, Davis-Marcisak, Emily, Deshpande, Atul, Popel, Aleksander S., Fertig, Elana J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547770/ https://www.ncbi.nlm.nih.gov/pubmed/34708216 http://dx.doi.org/10.1016/j.immuno.2021.100002 |
Ejemplares similares
-
A Spatial Quantitative Systems Pharmacology Platform spQSP-IO for Simulations of Tumor–Immune Interactions and Effects of Checkpoint Inhibitor Immunotherapy
por: Gong, Chang, et al.
Publicado: (2021) -
QSP‐IO: A Quantitative Systems Pharmacology Toolbox for Mechanistic Multiscale Modeling for Immuno‐Oncology Applications
por: Sové, Richard J., et al.
Publicado: (2020) -
A transcriptome-informed QSP model of metastatic triple-negative breast cancer identifies predictive biomarkers for PD-1 inhibition
por: Arulraj, Theinmozhi, et al.
Publicado: (2023) -
Informing virtual clinical trials of hepatocellular carcinoma with spatial multi-omics analysis of a human neoadjuvant immunotherapy clinical trial
por: Zhang, Shuming, et al.
Publicado: (2023) -
Generating immunogenomic data-guided virtual patients using a QSP model to predict response of advanced NSCLC to PD-L1 inhibition
por: Wang, Hanwen, et al.
Publicado: (2023)