Cargando…

Ribonuclease zymogen induces cytotoxicity upon HIV-1 infection

BACKGROUND: Targeting RNA is a promising yet underdeveloped modality for the selective killing of cells infected with HIV-1. The secretory ribonucleases (RNases) found in vertebrates have cytotoxic ribonucleolytic activity that is kept in check by a cytosolic ribonuclease inhibitor protein, RI. METH...

Descripción completa

Detalles Bibliográficos
Autores principales: Windsor, Ian W., Dudley, Dawn M., O’Connor, David H., Raines, Ronald T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549155/
https://www.ncbi.nlm.nih.gov/pubmed/34702287
http://dx.doi.org/10.1186/s12981-021-00399-z
Descripción
Sumario:BACKGROUND: Targeting RNA is a promising yet underdeveloped modality for the selective killing of cells infected with HIV-1. The secretory ribonucleases (RNases) found in vertebrates have cytotoxic ribonucleolytic activity that is kept in check by a cytosolic ribonuclease inhibitor protein, RI. METHODS: We engineered amino acid substitutions that enable human RNase 1 to evade RI upon its cyclization into a zymogen that is activated by the HIV-1 protease. In effect, the zymogen has an HIV-1 protease cleavage site between the termini of the wild-type enzyme, thereby positioning a cleavable linker over the active site that blocks access to a substrate. RESULTS: The amino acid substitutions in RNase 1 diminish its affinity for RI by 10(6)-fold and confer high toxicity for T-cell leukemia cells. Pretreating these cells with the zymogen leads to a substantial drop in their viability upon HIV-1 infection, indicating specific toxicity toward infected cells. CONCLUSIONS: These data demonstrate the utility of ribonuclease zymogens as biologic prodrugs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12981-021-00399-z.