Cargando…
A synthetic antibiotic class overcoming bacterial multidrug resistance
The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern(1). For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to com...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549432/ https://www.ncbi.nlm.nih.gov/pubmed/34707295 http://dx.doi.org/10.1038/s41586-021-04045-6 |
_version_ | 1784590783718883328 |
---|---|
author | Mitcheltree, Matthew J. Pisipati, Amarnath Syroegin, Egor A. Silvestre, Katherine J. Klepacki, Dorota Mason, Jeremy D. Terwilliger, Daniel W. Testolin, Giambattista Pote, Aditya R. Wu, Kelvin J. Y. Ladley, Richard Porter Chatman, Kelly Mankin, Alexander S. Polikanov, Yury S. Myers, Andrew G. |
author_facet | Mitcheltree, Matthew J. Pisipati, Amarnath Syroegin, Egor A. Silvestre, Katherine J. Klepacki, Dorota Mason, Jeremy D. Terwilliger, Daniel W. Testolin, Giambattista Pote, Aditya R. Wu, Kelvin J. Y. Ladley, Richard Porter Chatman, Kelly Mankin, Alexander S. Polikanov, Yury S. Myers, Andrew G. |
author_sort | Mitcheltree, Matthew J. |
collection | PubMed |
description | The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern(1). For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings(2). Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the [Formula: see text] nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance. |
format | Online Article Text |
id | pubmed-8549432 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-85494322021-10-27 A synthetic antibiotic class overcoming bacterial multidrug resistance Mitcheltree, Matthew J. Pisipati, Amarnath Syroegin, Egor A. Silvestre, Katherine J. Klepacki, Dorota Mason, Jeremy D. Terwilliger, Daniel W. Testolin, Giambattista Pote, Aditya R. Wu, Kelvin J. Y. Ladley, Richard Porter Chatman, Kelly Mankin, Alexander S. Polikanov, Yury S. Myers, Andrew G. Nature Article The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern(1). For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings(2). Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the [Formula: see text] nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance. Nature Publishing Group UK 2021-10-27 2021 /pmc/articles/PMC8549432/ /pubmed/34707295 http://dx.doi.org/10.1038/s41586-021-04045-6 Text en © The Author(s), under exclusive licence to Springer Nature Limited 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Mitcheltree, Matthew J. Pisipati, Amarnath Syroegin, Egor A. Silvestre, Katherine J. Klepacki, Dorota Mason, Jeremy D. Terwilliger, Daniel W. Testolin, Giambattista Pote, Aditya R. Wu, Kelvin J. Y. Ladley, Richard Porter Chatman, Kelly Mankin, Alexander S. Polikanov, Yury S. Myers, Andrew G. A synthetic antibiotic class overcoming bacterial multidrug resistance |
title | A synthetic antibiotic class overcoming bacterial multidrug resistance |
title_full | A synthetic antibiotic class overcoming bacterial multidrug resistance |
title_fullStr | A synthetic antibiotic class overcoming bacterial multidrug resistance |
title_full_unstemmed | A synthetic antibiotic class overcoming bacterial multidrug resistance |
title_short | A synthetic antibiotic class overcoming bacterial multidrug resistance |
title_sort | synthetic antibiotic class overcoming bacterial multidrug resistance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549432/ https://www.ncbi.nlm.nih.gov/pubmed/34707295 http://dx.doi.org/10.1038/s41586-021-04045-6 |
work_keys_str_mv | AT mitcheltreematthewj asyntheticantibioticclassovercomingbacterialmultidrugresistance AT pisipatiamarnath asyntheticantibioticclassovercomingbacterialmultidrugresistance AT syroeginegora asyntheticantibioticclassovercomingbacterialmultidrugresistance AT silvestrekatherinej asyntheticantibioticclassovercomingbacterialmultidrugresistance AT klepackidorota asyntheticantibioticclassovercomingbacterialmultidrugresistance AT masonjeremyd asyntheticantibioticclassovercomingbacterialmultidrugresistance AT terwilligerdanielw asyntheticantibioticclassovercomingbacterialmultidrugresistance AT testolingiambattista asyntheticantibioticclassovercomingbacterialmultidrugresistance AT poteadityar asyntheticantibioticclassovercomingbacterialmultidrugresistance AT wukelvinjy asyntheticantibioticclassovercomingbacterialmultidrugresistance AT ladleyrichardporter asyntheticantibioticclassovercomingbacterialmultidrugresistance AT chatmankelly asyntheticantibioticclassovercomingbacterialmultidrugresistance AT mankinalexanders asyntheticantibioticclassovercomingbacterialmultidrugresistance AT polikanovyurys asyntheticantibioticclassovercomingbacterialmultidrugresistance AT myersandrewg asyntheticantibioticclassovercomingbacterialmultidrugresistance AT mitcheltreematthewj syntheticantibioticclassovercomingbacterialmultidrugresistance AT pisipatiamarnath syntheticantibioticclassovercomingbacterialmultidrugresistance AT syroeginegora syntheticantibioticclassovercomingbacterialmultidrugresistance AT silvestrekatherinej syntheticantibioticclassovercomingbacterialmultidrugresistance AT klepackidorota syntheticantibioticclassovercomingbacterialmultidrugresistance AT masonjeremyd syntheticantibioticclassovercomingbacterialmultidrugresistance AT terwilligerdanielw syntheticantibioticclassovercomingbacterialmultidrugresistance AT testolingiambattista syntheticantibioticclassovercomingbacterialmultidrugresistance AT poteadityar syntheticantibioticclassovercomingbacterialmultidrugresistance AT wukelvinjy syntheticantibioticclassovercomingbacterialmultidrugresistance AT ladleyrichardporter syntheticantibioticclassovercomingbacterialmultidrugresistance AT chatmankelly syntheticantibioticclassovercomingbacterialmultidrugresistance AT mankinalexanders syntheticantibioticclassovercomingbacterialmultidrugresistance AT polikanovyurys syntheticantibioticclassovercomingbacterialmultidrugresistance AT myersandrewg syntheticantibioticclassovercomingbacterialmultidrugresistance |