Cargando…

A synthetic antibiotic class overcoming bacterial multidrug resistance

The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern(1). For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to com...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitcheltree, Matthew J., Pisipati, Amarnath, Syroegin, Egor A., Silvestre, Katherine J., Klepacki, Dorota, Mason, Jeremy D., Terwilliger, Daniel W., Testolin, Giambattista, Pote, Aditya R., Wu, Kelvin J. Y., Ladley, Richard Porter, Chatman, Kelly, Mankin, Alexander S., Polikanov, Yury S., Myers, Andrew G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549432/
https://www.ncbi.nlm.nih.gov/pubmed/34707295
http://dx.doi.org/10.1038/s41586-021-04045-6
_version_ 1784590783718883328
author Mitcheltree, Matthew J.
Pisipati, Amarnath
Syroegin, Egor A.
Silvestre, Katherine J.
Klepacki, Dorota
Mason, Jeremy D.
Terwilliger, Daniel W.
Testolin, Giambattista
Pote, Aditya R.
Wu, Kelvin J. Y.
Ladley, Richard Porter
Chatman, Kelly
Mankin, Alexander S.
Polikanov, Yury S.
Myers, Andrew G.
author_facet Mitcheltree, Matthew J.
Pisipati, Amarnath
Syroegin, Egor A.
Silvestre, Katherine J.
Klepacki, Dorota
Mason, Jeremy D.
Terwilliger, Daniel W.
Testolin, Giambattista
Pote, Aditya R.
Wu, Kelvin J. Y.
Ladley, Richard Porter
Chatman, Kelly
Mankin, Alexander S.
Polikanov, Yury S.
Myers, Andrew G.
author_sort Mitcheltree, Matthew J.
collection PubMed
description The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern(1). For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings(2). Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the [Formula: see text] nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance.
format Online
Article
Text
id pubmed-8549432
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85494322021-10-27 A synthetic antibiotic class overcoming bacterial multidrug resistance Mitcheltree, Matthew J. Pisipati, Amarnath Syroegin, Egor A. Silvestre, Katherine J. Klepacki, Dorota Mason, Jeremy D. Terwilliger, Daniel W. Testolin, Giambattista Pote, Aditya R. Wu, Kelvin J. Y. Ladley, Richard Porter Chatman, Kelly Mankin, Alexander S. Polikanov, Yury S. Myers, Andrew G. Nature Article The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern(1). For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings(2). Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the [Formula: see text] nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance. Nature Publishing Group UK 2021-10-27 2021 /pmc/articles/PMC8549432/ /pubmed/34707295 http://dx.doi.org/10.1038/s41586-021-04045-6 Text en © The Author(s), under exclusive licence to Springer Nature Limited 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Article
Mitcheltree, Matthew J.
Pisipati, Amarnath
Syroegin, Egor A.
Silvestre, Katherine J.
Klepacki, Dorota
Mason, Jeremy D.
Terwilliger, Daniel W.
Testolin, Giambattista
Pote, Aditya R.
Wu, Kelvin J. Y.
Ladley, Richard Porter
Chatman, Kelly
Mankin, Alexander S.
Polikanov, Yury S.
Myers, Andrew G.
A synthetic antibiotic class overcoming bacterial multidrug resistance
title A synthetic antibiotic class overcoming bacterial multidrug resistance
title_full A synthetic antibiotic class overcoming bacterial multidrug resistance
title_fullStr A synthetic antibiotic class overcoming bacterial multidrug resistance
title_full_unstemmed A synthetic antibiotic class overcoming bacterial multidrug resistance
title_short A synthetic antibiotic class overcoming bacterial multidrug resistance
title_sort synthetic antibiotic class overcoming bacterial multidrug resistance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549432/
https://www.ncbi.nlm.nih.gov/pubmed/34707295
http://dx.doi.org/10.1038/s41586-021-04045-6
work_keys_str_mv AT mitcheltreematthewj asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT pisipatiamarnath asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT syroeginegora asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT silvestrekatherinej asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT klepackidorota asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT masonjeremyd asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT terwilligerdanielw asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT testolingiambattista asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT poteadityar asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT wukelvinjy asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT ladleyrichardporter asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT chatmankelly asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT mankinalexanders asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT polikanovyurys asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT myersandrewg asyntheticantibioticclassovercomingbacterialmultidrugresistance
AT mitcheltreematthewj syntheticantibioticclassovercomingbacterialmultidrugresistance
AT pisipatiamarnath syntheticantibioticclassovercomingbacterialmultidrugresistance
AT syroeginegora syntheticantibioticclassovercomingbacterialmultidrugresistance
AT silvestrekatherinej syntheticantibioticclassovercomingbacterialmultidrugresistance
AT klepackidorota syntheticantibioticclassovercomingbacterialmultidrugresistance
AT masonjeremyd syntheticantibioticclassovercomingbacterialmultidrugresistance
AT terwilligerdanielw syntheticantibioticclassovercomingbacterialmultidrugresistance
AT testolingiambattista syntheticantibioticclassovercomingbacterialmultidrugresistance
AT poteadityar syntheticantibioticclassovercomingbacterialmultidrugresistance
AT wukelvinjy syntheticantibioticclassovercomingbacterialmultidrugresistance
AT ladleyrichardporter syntheticantibioticclassovercomingbacterialmultidrugresistance
AT chatmankelly syntheticantibioticclassovercomingbacterialmultidrugresistance
AT mankinalexanders syntheticantibioticclassovercomingbacterialmultidrugresistance
AT polikanovyurys syntheticantibioticclassovercomingbacterialmultidrugresistance
AT myersandrewg syntheticantibioticclassovercomingbacterialmultidrugresistance