Cargando…

Microglial transcription profiles in mouse and human are driven by APOE4 and sex

Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for sporadic Alzheimer’s disease (AD). APOE4 is known to affect the function of microglia, but to what extent this gene drives microglial gene expression has thus far not been examined. Using a transgenic mouse model of AD that expresses...

Descripción completa

Detalles Bibliográficos
Autores principales: Moser, V. Alexandra, Workman, Michael J., Hurwitz, Samantha J., Lipman, Rachel M., Pike, Christian J., Svendsen, Clive N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551075/
https://www.ncbi.nlm.nih.gov/pubmed/34746703
http://dx.doi.org/10.1016/j.isci.2021.103238
Descripción
Sumario:Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for sporadic Alzheimer’s disease (AD). APOE4 is known to affect the function of microglia, but to what extent this gene drives microglial gene expression has thus far not been examined. Using a transgenic mouse model of AD that expresses human APOE, we identify a unique transcriptional profile associated with APOE4 expression. We also show a sex and APOE interaction, such that both female sex and APOE4 drive expression of this gene profile. We confirm these findings in human cells, using microglia derived from induced pluripotent stem cells (iMGL). Moreover, we find that these interactions are driven in part by genes related to metal processing, and we show that zinc treatment has APOE genotype-dependent effects on iMGL. These data identify a sex- and APOE4-associated microglial transcription profile and highlight the importance of considering interactive risk factors such as sex and environmental exposures.