Cargando…
ParsVNN: parsimony visible neural networks for uncovering cancer-specific and drug-sensitive genes and pathways
Prediction of cancer-specific drug responses as well as identification of the corresponding drug-sensitive genes and pathways remains a major biological and clinical challenge. Deep learning models hold immense promise for better drug response predictions, but most of them cannot provide biological...
Autores principales: | Huang, Xiaoqing, Huang, Kun, Johnson, Travis, Radovich, Milan, Zhang, Jie, Ma, Jianzhu, Wang, Yijie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557386/ https://www.ncbi.nlm.nih.gov/pubmed/34729476 http://dx.doi.org/10.1093/nargab/lqab097 |
Ejemplares similares
-
Predicting domain-domain interactions using a parsimony approach
por: Guimarães, Katia S, et al.
Publicado: (2006) -
vNN Web Server for ADMET Predictions
por: Schyman, Patric, et al.
Publicado: (2017) -
The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
por: Bonneau, Richard, et al.
Publicado: (2006) -
Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees
por: Wu, Yi-Chieh, et al.
Publicado: (2014) -
Transmission Pathways of the VNN Introduced in Croatian Marine Aquaculture
por: Zrnčić, Snježana, et al.
Publicado: (2022)