Cargando…
A mixture model for signature discovery from sparse mutation data
Mutational signatures are key to understanding the processes that shape cancer genomes, yet their analysis requires relatively rich whole-genome or whole-exome mutation data. Recently, orders-of-magnitude sparser gene-panel-sequencing data have become increasingly available in the clinic. To deal wi...
Autores principales: | Sason, Itay, Chen, Yuexi, Leiserson, Mark D.M., Sharan, Roded |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8559697/ https://www.ncbi.nlm.nih.gov/pubmed/34724984 http://dx.doi.org/10.1186/s13073-021-00988-7 |
Ejemplares similares
-
A Biterm Topic Model for Sparse Mutation Data
por: Sason, Itay, et al.
Publicado: (2023) -
Hidden Markov models lead to higher resolution maps of mutation signature activity in cancer
por: Wojtowicz, Damian, et al.
Publicado: (2019) -
A Sticky Multinomial Mixture Model of Strand-Coordinated Mutational Processes in Cancer
por: Sason, Itay, et al.
Publicado: (2020) -
A mutation-level covariate model for mutational signatures
por: Kahane, Itay, et al.
Publicado: (2023) -
A data-driven approach for constructing mutation categories for mutational signature analysis
por: Gilad, Gal, et al.
Publicado: (2021)