Cargando…

Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro

As an anti-diabetic drug, metformin has been demonstrated to exhibit antitumor effects. However, the mechanisms involved in decreasing tumor formation, including canine mammary gland tumors (CMGTs), are not well elucidated. The aim of the present study was to evaluate the ability of metformin to ind...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Yuying, Ren, Xiaoli, Wang, Yingxue, Xu, Enshuang, Wang, Shuang, Ge, Ruidong, Liu, Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561621/
https://www.ncbi.nlm.nih.gov/pubmed/34733370
http://dx.doi.org/10.3892/ol.2021.13113
_version_ 1784593125842354176
author Fan, Yuying
Ren, Xiaoli
Wang, Yingxue
Xu, Enshuang
Wang, Shuang
Ge, Ruidong
Liu, Yun
author_facet Fan, Yuying
Ren, Xiaoli
Wang, Yingxue
Xu, Enshuang
Wang, Shuang
Ge, Ruidong
Liu, Yun
author_sort Fan, Yuying
collection PubMed
description As an anti-diabetic drug, metformin has been demonstrated to exhibit antitumor effects. However, the mechanisms involved in decreasing tumor formation, including canine mammary gland tumors (CMGTs), are not well elucidated. The aim of the present study was to evaluate the ability of metformin to induce apoptosis and cell cycle arrest in CMGT cells, as well as identifying the pathways underlying these effects. Cell viability was assessed by Cell Counting Kit-8 analysis following treating with metformin. Subsequently, apoptosis and cell cycle progression were assessed by flow cytometry, and the expression of associated proteins was examined. Expression levels of classical AMP-activated protein kinase (AMPK), protein kinase B (AKT), mechanistic target of rapamycin (mTOR) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) were then investigated using western blot analysis. Metformin inhibited the proliferation of CHMm cells in a concentration-dependent manner. Specifically, metformin induced cell cycle arrest in the G(0)/G(1) phases, accompanied by increased expression of p21 and p27, and decreased expression of cyclin D1 and cyclin-dependent kinase 4. Marked levels of apoptosis were observed in CHMm cells alongside the activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase. Also, the level of Bcl-2 was decreased, and that of Bax was increased. The expression of associated signaling molecules revealed that metformin markedly increased the phosphorylation of AMPK in CHMm cells, and decreased the levels of phosphorylated (p-)AKT, p-mTOR and p-4E-BP1, while Compound C reversed these changes. These findings demonstrated that metformin may be a potential therapeutic agent for CMGTs, acting via the AMPK/AKT/mTOR signaling pathway.
format Online
Article
Text
id pubmed-8561621
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-85616212021-11-02 Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro Fan, Yuying Ren, Xiaoli Wang, Yingxue Xu, Enshuang Wang, Shuang Ge, Ruidong Liu, Yun Oncol Lett Articles As an anti-diabetic drug, metformin has been demonstrated to exhibit antitumor effects. However, the mechanisms involved in decreasing tumor formation, including canine mammary gland tumors (CMGTs), are not well elucidated. The aim of the present study was to evaluate the ability of metformin to induce apoptosis and cell cycle arrest in CMGT cells, as well as identifying the pathways underlying these effects. Cell viability was assessed by Cell Counting Kit-8 analysis following treating with metformin. Subsequently, apoptosis and cell cycle progression were assessed by flow cytometry, and the expression of associated proteins was examined. Expression levels of classical AMP-activated protein kinase (AMPK), protein kinase B (AKT), mechanistic target of rapamycin (mTOR) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) were then investigated using western blot analysis. Metformin inhibited the proliferation of CHMm cells in a concentration-dependent manner. Specifically, metformin induced cell cycle arrest in the G(0)/G(1) phases, accompanied by increased expression of p21 and p27, and decreased expression of cyclin D1 and cyclin-dependent kinase 4. Marked levels of apoptosis were observed in CHMm cells alongside the activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase. Also, the level of Bcl-2 was decreased, and that of Bax was increased. The expression of associated signaling molecules revealed that metformin markedly increased the phosphorylation of AMPK in CHMm cells, and decreased the levels of phosphorylated (p-)AKT, p-mTOR and p-4E-BP1, while Compound C reversed these changes. These findings demonstrated that metformin may be a potential therapeutic agent for CMGTs, acting via the AMPK/AKT/mTOR signaling pathway. D.A. Spandidos 2021-12 2021-10-26 /pmc/articles/PMC8561621/ /pubmed/34733370 http://dx.doi.org/10.3892/ol.2021.13113 Text en Copyright: © Fan et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Fan, Yuying
Ren, Xiaoli
Wang, Yingxue
Xu, Enshuang
Wang, Shuang
Ge, Ruidong
Liu, Yun
Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro
title Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro
title_full Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro
title_fullStr Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro
title_full_unstemmed Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro
title_short Metformin inhibits the proliferation of canine mammary gland tumor cells through the AMPK/AKT/mTOR signaling pathway in vitro
title_sort metformin inhibits the proliferation of canine mammary gland tumor cells through the ampk/akt/mtor signaling pathway in vitro
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561621/
https://www.ncbi.nlm.nih.gov/pubmed/34733370
http://dx.doi.org/10.3892/ol.2021.13113
work_keys_str_mv AT fanyuying metformininhibitstheproliferationofcaninemammaryglandtumorcellsthroughtheampkaktmtorsignalingpathwayinvitro
AT renxiaoli metformininhibitstheproliferationofcaninemammaryglandtumorcellsthroughtheampkaktmtorsignalingpathwayinvitro
AT wangyingxue metformininhibitstheproliferationofcaninemammaryglandtumorcellsthroughtheampkaktmtorsignalingpathwayinvitro
AT xuenshuang metformininhibitstheproliferationofcaninemammaryglandtumorcellsthroughtheampkaktmtorsignalingpathwayinvitro
AT wangshuang metformininhibitstheproliferationofcaninemammaryglandtumorcellsthroughtheampkaktmtorsignalingpathwayinvitro
AT geruidong metformininhibitstheproliferationofcaninemammaryglandtumorcellsthroughtheampkaktmtorsignalingpathwayinvitro
AT liuyun metformininhibitstheproliferationofcaninemammaryglandtumorcellsthroughtheampkaktmtorsignalingpathwayinvitro