Cargando…
Perfluoroalkyl Carboxylic Acids Interact with the Human Bile Acid Transporter NTCP
Na(+)/taurocholate cotransporting polypeptide (NTCP) is important for the enterohepatic circulation of bile acids, which has been suggested to contribute to the long serum elimination half-lives of perfluoroalkyl substances in humans. We demonstrated that some perfluoroalkyl sulfonates are transport...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562773/ https://www.ncbi.nlm.nih.gov/pubmed/34738093 http://dx.doi.org/10.3390/livers1040017 |
Sumario: | Na(+)/taurocholate cotransporting polypeptide (NTCP) is important for the enterohepatic circulation of bile acids, which has been suggested to contribute to the long serum elimination half-lives of perfluoroalkyl substances in humans. We demonstrated that some perfluoroalkyl sulfonates are transported by NTCP; however, little was known about carboxylates. The purpose of this study was to determine if perfluoroalkyl carboxylates would interact with NTCP and potentially act as substrates. Sodium-dependent transport of [(3)H]-taurocholate was measured in human embryonic kidney cells (HEK293) stably expressing NTCP in the absence or presence of perfluoroalkyl carboxylates with varying chain lengths. PFCAs with 8 (PFOA), 9 (PFNA), and 10 (PFDA) carbons were the strongest inhibitors. Inhibition kinetics demonstrated competitive inhibition and indicated that PFNA was the strongest inhibitor followed by PFDA and PFOA. All three compounds are transported by NTCP, and kinetics experiments revealed that PFOA had the highest affinity for NTCP with a K(m) value of 1.8 ± 0.4 mM. The K(m) value PFNA was estimated to be 5.3 ± 3.5 mM and the value for PFDA could not be determined due to limited solubility. In conclusion, our results suggest that, in addition to sulfonates, perfluorinated carboxylates are substrates of NTCP and have the potential to interact with NTCP-mediated transport. |
---|