Cargando…
Impairment in renal medulla development underlies salt wasting in Clc-k2 channel deficiency
The prevailing view is that the ClC-Ka chloride channel (mouse Clc-k1) functions in the thin ascending limb to control urine concentration, whereas the ClC-Kb channel (mouse Clc-k2) functions in the thick ascending limb (TAL) to control salt reabsorption. Mutations of ClC-Kb cause classic Bartter sy...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564913/ https://www.ncbi.nlm.nih.gov/pubmed/34499620 http://dx.doi.org/10.1172/jci.insight.151039 |
Sumario: | The prevailing view is that the ClC-Ka chloride channel (mouse Clc-k1) functions in the thin ascending limb to control urine concentration, whereas the ClC-Kb channel (mouse Clc-k2) functions in the thick ascending limb (TAL) to control salt reabsorption. Mutations of ClC-Kb cause classic Bartter syndrome, characterized by renal salt wasting, with perinatal to adolescent onset. We studied the roles of Clc-k channels in perinatal mouse kidneys using constitutive or inducible kidney-specific gene ablation and 2D and advanced 3D imaging of optically cleared kidneys. We show that Clc-k1 and Clc-k2 were broadly expressed and colocalized in perinatal kidneys. Deletion of Clc-k1 and Clc-k2 revealed that both participated in NKCC2- and NCC-mediated NaCl reabsorption in neonatal kidneys. Embryonic deletion of Clc-k2 caused tubular injury and impaired renal medulla and TAL development. Inducible deletion of Clc-k2 beginning after medulla maturation produced mild salt wasting resulting from reduced NCC activity. Thus, both Clc-k1 and Clc-k2 contributed to salt reabsorption in TAL and distal convoluted tubule (DCT) in neonates, potentially explaining the less-severe phenotypes in classic Bartter syndrome. As opposed to the current understanding that salt wasting in adult patients with Bartter syndrome is due to Clc-k2 deficiency in adult TAL, our results suggest that it originates mainly from defects occurring in the medulla and TAL during development. |
---|