Cargando…
Lipid-induced DRAM recruits STOM to lysosomes and induces LMP to promote exosome release from hepatocytes in NAFLD
The biogenesis and diagnostic value of exosomes in nonalcoholic fatty liver disease (NAFLD) are unclear. In this study, we revealed that the plasma exosome level was higher in patients with NAFLD than that in healthy controls. Damage-regulated autophagy modulator (DRAM) was identified as one of the...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565908/ https://www.ncbi.nlm.nih.gov/pubmed/34731006 http://dx.doi.org/10.1126/sciadv.abh1541 |
Sumario: | The biogenesis and diagnostic value of exosomes in nonalcoholic fatty liver disease (NAFLD) are unclear. In this study, we revealed that the plasma exosome level was higher in patients with NAFLD than that in healthy controls. Damage-regulated autophagy modulator (DRAM) was identified as one of the genes related to exosome secretion in patients with NAFLD. Then, loss or knockdown of DRAM down-regulated exosome secretion from hepatic cells using a knockout mouse model and a knockdown cell model. DRAM knockout reversed high-fat diet–induced increase of secreted exosomes. Furthermore, DRAM knockdown inhibited fatty acid (FA)–induced lysosomal membrane permeabilization and lysosome inhibitor reversed the down-regulation of exosome release in DRAM knockout mice. Last, FA-induced DRAM interacted with stomatin and promoted its lysosomal localization to enhance exosome secretion from hepatic cells. We revealed a DRAM-mediated mechanism for exosome secretion and provided the foundation for plasma exosomes as a potential biomarker for NAFLD. |
---|