Cargando…

Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status

The present study describes the probiotic potential and functional properties of the lactic acid bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk. The isolate OBK05 was assessed for its probiotic properties. The isolate showed notable tolerance to pH 2.0 and 3.0 (8.44, 8.35 log CFU/m...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhukya, Kiran Kumar, Bhukya, Bhima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568294/
https://www.ncbi.nlm.nih.gov/pubmed/34735552
http://dx.doi.org/10.1371/journal.pone.0259702
_version_ 1784594409068691456
author Bhukya, Kiran Kumar
Bhukya, Bhima
author_facet Bhukya, Kiran Kumar
Bhukya, Bhima
author_sort Bhukya, Kiran Kumar
collection PubMed
description The present study describes the probiotic potential and functional properties of the lactic acid bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk. The isolate OBK05 was assessed for its probiotic properties. The isolate showed notable tolerance to pH 2.0 and 3.0 (8.44, 8.35 log CFU/mL), oxbile of 0.5% at 2 and 4 h of incubation (6.97, 6.35 log CFU/mL) and higher aggregation (auto-aggregation, adhesion to hydrocarbons) than the referral strain, Lactobacillus acidophilus MTCC 10307. The adhesion efficiency to HT-29 cells was found to be maximum, corresponding to 93.5% and 97% at 1 and 2 h incubation, respectively. In addition, the isolate OBK05 showed antagonistic solid activity against bacterial pathogens like Pseudomonas aeruginosa MTCC 424 and Bacillus subtilis MTCC 1133. The phenotypic antibiotic resistance of the isolate was examined before and after curing plasmids. Among the known five structural genes responsible for different antibiotic resistance, four genes indicating antibiotic resistance to kanamycin-Aph (3´´)-III, streptomycin-strA, vancomycin-vanA and ciprofloxacin-gyrA were detected by PCR amplification of genomic DNA. Further, the horizontal gene transfer from OBK05 isolate to pathogens was not found for these antibiotic resistance markers when filter and food mating were carried out as no transconjugants developed on media plates containing respective antibiotics. This indicates that the intrinsic resistance is harbored on chromosomal genes, and hence it is nontransferable to other microbes. In addition, strain OBK05 exhibited good DPPH scavenging activity of 56 to 77% and liberated free amino acid from conjugated bile acid. The strain OBK05 demonstrated a strong ability to reduce cholesterol at 12 h (17%), 24 h (27%) and 48 h (67%) of incubation.
format Online
Article
Text
id pubmed-8568294
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-85682942021-11-05 Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status Bhukya, Kiran Kumar Bhukya, Bhima PLoS One Research Article The present study describes the probiotic potential and functional properties of the lactic acid bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk. The isolate OBK05 was assessed for its probiotic properties. The isolate showed notable tolerance to pH 2.0 and 3.0 (8.44, 8.35 log CFU/mL), oxbile of 0.5% at 2 and 4 h of incubation (6.97, 6.35 log CFU/mL) and higher aggregation (auto-aggregation, adhesion to hydrocarbons) than the referral strain, Lactobacillus acidophilus MTCC 10307. The adhesion efficiency to HT-29 cells was found to be maximum, corresponding to 93.5% and 97% at 1 and 2 h incubation, respectively. In addition, the isolate OBK05 showed antagonistic solid activity against bacterial pathogens like Pseudomonas aeruginosa MTCC 424 and Bacillus subtilis MTCC 1133. The phenotypic antibiotic resistance of the isolate was examined before and after curing plasmids. Among the known five structural genes responsible for different antibiotic resistance, four genes indicating antibiotic resistance to kanamycin-Aph (3´´)-III, streptomycin-strA, vancomycin-vanA and ciprofloxacin-gyrA were detected by PCR amplification of genomic DNA. Further, the horizontal gene transfer from OBK05 isolate to pathogens was not found for these antibiotic resistance markers when filter and food mating were carried out as no transconjugants developed on media plates containing respective antibiotics. This indicates that the intrinsic resistance is harbored on chromosomal genes, and hence it is nontransferable to other microbes. In addition, strain OBK05 exhibited good DPPH scavenging activity of 56 to 77% and liberated free amino acid from conjugated bile acid. The strain OBK05 demonstrated a strong ability to reduce cholesterol at 12 h (17%), 24 h (27%) and 48 h (67%) of incubation. Public Library of Science 2021-11-04 /pmc/articles/PMC8568294/ /pubmed/34735552 http://dx.doi.org/10.1371/journal.pone.0259702 Text en © 2021 Bhukya, Bhukya https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Bhukya, Kiran Kumar
Bhukya, Bhima
Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status
title Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status
title_full Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status
title_fullStr Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status
title_full_unstemmed Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status
title_short Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status
title_sort unraveling the probiotic efficiency of bacterium pediococcus pentosaceus obk05 isolated from buttermilk: an in vitro study for cholesterol assimilation potential and antibiotic resistance status
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568294/
https://www.ncbi.nlm.nih.gov/pubmed/34735552
http://dx.doi.org/10.1371/journal.pone.0259702
work_keys_str_mv AT bhukyakirankumar unravelingtheprobioticefficiencyofbacteriumpediococcuspentosaceusobk05isolatedfrombuttermilkaninvitrostudyforcholesterolassimilationpotentialandantibioticresistancestatus
AT bhukyabhima unravelingtheprobioticefficiencyofbacteriumpediococcuspentosaceusobk05isolatedfrombuttermilkaninvitrostudyforcholesterolassimilationpotentialandantibioticresistancestatus