Cargando…

MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload

Targeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR...

Descripción completa

Detalles Bibliográficos
Autores principales: Bao, Weier, Liu, Ming, Meng, Jiaqi, Liu, Siyuan, Wang, Shuang, Jia, Rongrong, Wang, Yugang, Ma, Guanghui, Wei, Wei, Tian, Zhiyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569165/
https://www.ncbi.nlm.nih.gov/pubmed/34737274
http://dx.doi.org/10.1038/s41467-021-26655-4
_version_ 1784594593328660480
author Bao, Weier
Liu, Ming
Meng, Jiaqi
Liu, Siyuan
Wang, Shuang
Jia, Rongrong
Wang, Yugang
Ma, Guanghui
Wei, Wei
Tian, Zhiyuan
author_facet Bao, Weier
Liu, Ming
Meng, Jiaqi
Liu, Siyuan
Wang, Shuang
Jia, Rongrong
Wang, Yugang
Ma, Guanghui
Wei, Wei
Tian, Zhiyuan
author_sort Bao, Weier
collection PubMed
description Targeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR) light-triggered synergistically reinforced oxidative stress and calcium overload to mitochondria. The folate decoration on MOFs shells enables efficient cellular uptake of nanoagents. Based on the upconversion ability of UCNPs, NIR light mediates Fe(3+)-to-Fe(2+) reduction and simultaneously activates the photoacid generator (pHP) encapsulated in MOFs cavities, which enables release of free Fe(2+) and acidification of intracellular microenvironment, respectively. The overexpressed H(2)O(2) in mitochondria, highly reactive Fe(2+) and acidic milieu synergistically reinforce Fenton reactions for producing lethal hydroxyl radicals (•OH) while plasma photoacidification inducing calcium influx, leading to mitochondria calcium overload. The dual-mitochondria-damage-based therapeutic potency of the nanoagent has been unequivocally confirmed in cell- and patient-derived tumor xenograft models in vivo.
format Online
Article
Text
id pubmed-8569165
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85691652021-11-15 MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload Bao, Weier Liu, Ming Meng, Jiaqi Liu, Siyuan Wang, Shuang Jia, Rongrong Wang, Yugang Ma, Guanghui Wei, Wei Tian, Zhiyuan Nat Commun Article Targeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR) light-triggered synergistically reinforced oxidative stress and calcium overload to mitochondria. The folate decoration on MOFs shells enables efficient cellular uptake of nanoagents. Based on the upconversion ability of UCNPs, NIR light mediates Fe(3+)-to-Fe(2+) reduction and simultaneously activates the photoacid generator (pHP) encapsulated in MOFs cavities, which enables release of free Fe(2+) and acidification of intracellular microenvironment, respectively. The overexpressed H(2)O(2) in mitochondria, highly reactive Fe(2+) and acidic milieu synergistically reinforce Fenton reactions for producing lethal hydroxyl radicals (•OH) while plasma photoacidification inducing calcium influx, leading to mitochondria calcium overload. The dual-mitochondria-damage-based therapeutic potency of the nanoagent has been unequivocally confirmed in cell- and patient-derived tumor xenograft models in vivo. Nature Publishing Group UK 2021-11-04 /pmc/articles/PMC8569165/ /pubmed/34737274 http://dx.doi.org/10.1038/s41467-021-26655-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Bao, Weier
Liu, Ming
Meng, Jiaqi
Liu, Siyuan
Wang, Shuang
Jia, Rongrong
Wang, Yugang
Ma, Guanghui
Wei, Wei
Tian, Zhiyuan
MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload
title MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload
title_full MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload
title_fullStr MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload
title_full_unstemmed MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload
title_short MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload
title_sort mofs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569165/
https://www.ncbi.nlm.nih.gov/pubmed/34737274
http://dx.doi.org/10.1038/s41467-021-26655-4
work_keys_str_mv AT baoweier mofsbasednanoagentenablesdualmitochondrialdamageinsynergisticantitumortherapyviaoxidativestressandcalciumoverload
AT liuming mofsbasednanoagentenablesdualmitochondrialdamageinsynergisticantitumortherapyviaoxidativestressandcalciumoverload
AT mengjiaqi mofsbasednanoagentenablesdualmitochondrialdamageinsynergisticantitumortherapyviaoxidativestressandcalciumoverload
AT liusiyuan mofsbasednanoagentenablesdualmitochondrialdamageinsynergisticantitumortherapyviaoxidativestressandcalciumoverload
AT wangshuang mofsbasednanoagentenablesdualmitochondrialdamageinsynergisticantitumortherapyviaoxidativestressandcalciumoverload
AT jiarongrong mofsbasednanoagentenablesdualmitochondrialdamageinsynergisticantitumortherapyviaoxidativestressandcalciumoverload
AT wangyugang mofsbasednanoagentenablesdualmitochondrialdamageinsynergisticantitumortherapyviaoxidativestressandcalciumoverload
AT maguanghui mofsbasednanoagentenablesdualmitochondrialdamageinsynergisticantitumortherapyviaoxidativestressandcalciumoverload
AT weiwei mofsbasednanoagentenablesdualmitochondrialdamageinsynergisticantitumortherapyviaoxidativestressandcalciumoverload
AT tianzhiyuan mofsbasednanoagentenablesdualmitochondrialdamageinsynergisticantitumortherapyviaoxidativestressandcalciumoverload