Cargando…
A machine learning framework for rapid forecasting and history matching in unconventional reservoirs
We present a novel workflow for forecasting production in unconventional reservoirs using reduced-order models and machine-learning. Our physics-informed machine-learning workflow addresses the challenges to real-time reservoir management in unconventionals, namely the lack of data (i.e., the time-f...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571309/ https://www.ncbi.nlm.nih.gov/pubmed/34741046 http://dx.doi.org/10.1038/s41598-021-01023-w |