Cargando…
A machine learning framework for rapid forecasting and history matching in unconventional reservoirs
We present a novel workflow for forecasting production in unconventional reservoirs using reduced-order models and machine-learning. Our physics-informed machine-learning workflow addresses the challenges to real-time reservoir management in unconventionals, namely the lack of data (i.e., the time-f...
Autores principales: | Srinivasan, Shriram, O’Malley, Daniel, Mudunuru, Maruti K., Sweeney, Matthew R., Hyman, Jeffrey D., Karra, Satish, Frash, Luke, Carey, J. William, Gross, Michael R., Guthrie, George D., Carr, Timothy, Li, Liwei, Viswanathan, Hari S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571309/ https://www.ncbi.nlm.nih.gov/pubmed/34741046 http://dx.doi.org/10.1038/s41598-021-01023-w |
Ejemplares similares
-
Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning
por: Srinivasan, Gowri, et al.
Publicado: (2018) -
Physics-informed machine learning with differentiable programming for heterogeneous underground reservoir pressure management
por: Pachalieva, Aleksandra, et al.
Publicado: (2022) -
Unconventional gas reservoirs
por: Islam, Rafiqul, 1959-
Publicado: (2015) -
Unconventional Gas Reservoirs
por: Islam, M
Publicado: (2014) -
Origins of pressure dependent permeability in unconventional hydrocarbon reservoirs
por: Valenza, John J., et al.
Publicado: (2023)