Cargando…
Kernel recursive least square tracker and long-short term memory ensemble based battery health prognostic model
A data-driven approach is developed to predict the future capacity of lithium-ion batteries (LIBs) in this work. The empirical mode decomposition (EMD), kernel recursive least square tracker (KRLST), and long short-term memory (LSTM) are used to derive the proposed approach. First, the LIB capacity...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571724/ https://www.ncbi.nlm.nih.gov/pubmed/34765915 http://dx.doi.org/10.1016/j.isci.2021.103286 |