Cargando…
Kernel recursive least square tracker and long-short term memory ensemble based battery health prognostic model
A data-driven approach is developed to predict the future capacity of lithium-ion batteries (LIBs) in this work. The empirical mode decomposition (EMD), kernel recursive least square tracker (KRLST), and long short-term memory (LSTM) are used to derive the proposed approach. First, the LIB capacity...
Autores principales: | Ali, Muhammad Umair, Kallu, Karam Dad, Masood, Haris, Niazi, Kamran Ali Khan, Alvi, Muhammad Junaid, Ghafoor, Usman, Zafar, Amad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571724/ https://www.ncbi.nlm.nih.gov/pubmed/34765915 http://dx.doi.org/10.1016/j.isci.2021.103286 |
Ejemplares similares
-
An Isolated CNN Architecture for Classification of Finger-Tapping Tasks Using Initial Dip Images: A Functional Near-Infrared Spectroscopy Study
por: Ali, Muhammad Umair, et al.
Publicado: (2023) -
A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries
por: Ali, Muhammad Umair, et al.
Publicado: (2022) -
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
por: Zhang, Chunyuan, et al.
Publicado: (2016) -
A Robust Computer-Aided Automated Brain Tumor Diagnosis Approach Using PSO-ReliefF Optimized Gaussian and Non-Linear Feature Space
por: Ali, Muhammad Umair, et al.
Publicado: (2022) -
OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface
por: Ali, Muhammad Umair, et al.
Publicado: (2023)