Cargando…

Detection of glucose-derived d- and l-lactate in cancer cells by the use of a chiral NMR shift reagent

BACKGROUND: Excessive lactate production, a hallmark of cancer, is largely formed by the reduction of pyruvate via lactate dehydrogenase (LDH) to l-lactate. Although d-lactate can also be produced from glucose via the methylglyoxal pathway in small amounts, less is known about the amount of d-lactat...

Descripción completa

Detalles Bibliográficos
Autores principales: Suh, Eul Hyun, Geraldes, Carlos F. G. C., Chirayil, Sara, Faubert, Brandon, Ayala, Raul, DeBerardinis, Ralph J., Sherry, A. Dean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571830/
https://www.ncbi.nlm.nih.gov/pubmed/34742347
http://dx.doi.org/10.1186/s40170-021-00267-4
Descripción
Sumario:BACKGROUND: Excessive lactate production, a hallmark of cancer, is largely formed by the reduction of pyruvate via lactate dehydrogenase (LDH) to l-lactate. Although d-lactate can also be produced from glucose via the methylglyoxal pathway in small amounts, less is known about the amount of d-lactate produced in cancer cells. Since the stereoisomers of lactate cannot be distinguished by conventional (1)H NMR spectroscopy, a chiral NMR shift reagent was used to fully resolve the (1)H NMR resonances of d- and l-lactate. METHODS: The production of l-lactate from glucose and d-lactate from methylglyoxal was first demonstrated in freshly isolated red blood cells using the chiral NMR shift reagent, YbDO3A-trisamide. Then, two different cell lines with high GLO1 expression (H1648 and H 1395) were selected from a panel of over 80 well-characterized human NSCLC cell lines, grown to confluence in standard tissue culture media, washed with phosphate-buffered saline, and exposed to glucose in a buffer for 4 h. After 4 h, a small volume of extracellular fluid was collected and mixed with YbDO3A-trisamide for analysis by (1)H NMR spectroscopy. RESULTS: A suspension of freshly isolated red blood cells exposed to 5mM glucose produced l-lactate as expected but very little d-lactate. To evaluate the utility of the chiral NMR shift reagent, methylglyoxal was then added to red cells along with glucose to stimulate the production of d-lactate via the glyoxalate pathway. In this case, both d-lactate and l-lactate were produced and their NMR chemical shifts assigned. NSCLC cell lines with different expression levels of GLO1 produced both l- and d-lactate after incubation with glucose and glutamine alone. A GLO1-deleted parental cell line (3553T3) showed no production of d-lactate from glucose while re-expression of GLO1 resulted in higher production of d-lactate. CONCLUSIONS: The shift-reagent-aided NMR technique demonstrates that d-lactate is produced from glucose in NSCLC cells via the methylglyoxal pathway. The biological role of d-lactate is uncertain but a convenient method for monitoring d-lactate production could provide new insights into the biological roles of d- versus l-lactate in cancer metabolism. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40170-021-00267-4.