Cargando…
The balance between AIM2-associated inflammation and autophagy: the role of CHMP2A in brain injury after cardiac arrest
BACKGROUND: Activation of the absent in melanoma 2 (AIM2) inflammasome and impaired autophagosome clearance in neurons contribute significantly to cardiac arrest and return of spontaneous circulation (CA-ROSC) injury, while the mechanism by which the AIM2 inflammasome is regulated and relationship b...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571899/ https://www.ncbi.nlm.nih.gov/pubmed/34740380 http://dx.doi.org/10.1186/s12974-021-02307-8 |
_version_ | 1784595113431793664 |
---|---|
author | Shao, Rongjiao Wang, Xintao Xu, Tianhua Xia, Yiyang Cui, Derong |
author_facet | Shao, Rongjiao Wang, Xintao Xu, Tianhua Xia, Yiyang Cui, Derong |
author_sort | Shao, Rongjiao |
collection | PubMed |
description | BACKGROUND: Activation of the absent in melanoma 2 (AIM2) inflammasome and impaired autophagosome clearance in neurons contribute significantly to cardiac arrest and return of spontaneous circulation (CA-ROSC) injury, while the mechanism by which the AIM2 inflammasome is regulated and relationship between the processes remain poorly understood. Recently, charged multivesicular body protein 2A (CHMP2A), a subunit of endosomal sorting complex required for transport (ESCRT), was shown to regulate phagophore closure, and its depletion led to the accumulation of autophagosomes and induced cell death. Here, we investigated whether CHMP2A-mediated autophagy was an underlying mechanism of AIM2-associated inflammation after CA-ROSC and explored the potential link between the AIM2 inflammasome and autophagy under ischemic conditions. METHODS: AIM2 inflammasome activation and autophagic flux in the cortex were assessed in the CA-ROSC rat model. We injected LV-Vector or LV-CHMP2A virus into the motor cortex with stereotaxic coordinates and divided the rats into four groups: Sham, CA, CA+LV-Vector, and CA+LV-CHMP2A. Neurologic deficit scores (NDSs), balance beam tests, histopathological injury of the brain, and expression of the AIM2 inflammasome and proinflammatory cytokines were analyzed. RESULTS: AIM2 inflammasome activation and increased interleukin 1 beta (IL-1β) and IL-18 release were concurrent with reduced levels of CHMP2A-induced autophagy in CA-ROSC rat neurons. In addition, silencing CHMP2A resulted in autophagosome accumulation and decreased autophagic degradation of the AIM2 inflammasome. In parallel, a reduction in AIM2 contributed to autophagy activation and mitigated oxygen–glucose deprivation and reperfusion (OGD-Rep)-induced inflammation. Notably, CHMP2A overexpression in the cortex hindered neuroinflammation, protected against ischemic brain damage, and improved neurologic outcomes after CA. CONCLUSIONS: Our results support a potential link between autophagy and AIM2 signaling, and targeting CHMP2A may provide new insights into neuroinflammation in the early phase during CA-ROSC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12974-021-02307-8. |
format | Online Article Text |
id | pubmed-8571899 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-85718992021-11-08 The balance between AIM2-associated inflammation and autophagy: the role of CHMP2A in brain injury after cardiac arrest Shao, Rongjiao Wang, Xintao Xu, Tianhua Xia, Yiyang Cui, Derong J Neuroinflammation Research BACKGROUND: Activation of the absent in melanoma 2 (AIM2) inflammasome and impaired autophagosome clearance in neurons contribute significantly to cardiac arrest and return of spontaneous circulation (CA-ROSC) injury, while the mechanism by which the AIM2 inflammasome is regulated and relationship between the processes remain poorly understood. Recently, charged multivesicular body protein 2A (CHMP2A), a subunit of endosomal sorting complex required for transport (ESCRT), was shown to regulate phagophore closure, and its depletion led to the accumulation of autophagosomes and induced cell death. Here, we investigated whether CHMP2A-mediated autophagy was an underlying mechanism of AIM2-associated inflammation after CA-ROSC and explored the potential link between the AIM2 inflammasome and autophagy under ischemic conditions. METHODS: AIM2 inflammasome activation and autophagic flux in the cortex were assessed in the CA-ROSC rat model. We injected LV-Vector or LV-CHMP2A virus into the motor cortex with stereotaxic coordinates and divided the rats into four groups: Sham, CA, CA+LV-Vector, and CA+LV-CHMP2A. Neurologic deficit scores (NDSs), balance beam tests, histopathological injury of the brain, and expression of the AIM2 inflammasome and proinflammatory cytokines were analyzed. RESULTS: AIM2 inflammasome activation and increased interleukin 1 beta (IL-1β) and IL-18 release were concurrent with reduced levels of CHMP2A-induced autophagy in CA-ROSC rat neurons. In addition, silencing CHMP2A resulted in autophagosome accumulation and decreased autophagic degradation of the AIM2 inflammasome. In parallel, a reduction in AIM2 contributed to autophagy activation and mitigated oxygen–glucose deprivation and reperfusion (OGD-Rep)-induced inflammation. Notably, CHMP2A overexpression in the cortex hindered neuroinflammation, protected against ischemic brain damage, and improved neurologic outcomes after CA. CONCLUSIONS: Our results support a potential link between autophagy and AIM2 signaling, and targeting CHMP2A may provide new insights into neuroinflammation in the early phase during CA-ROSC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12974-021-02307-8. BioMed Central 2021-11-05 /pmc/articles/PMC8571899/ /pubmed/34740380 http://dx.doi.org/10.1186/s12974-021-02307-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Shao, Rongjiao Wang, Xintao Xu, Tianhua Xia, Yiyang Cui, Derong The balance between AIM2-associated inflammation and autophagy: the role of CHMP2A in brain injury after cardiac arrest |
title | The balance between AIM2-associated inflammation and autophagy: the role of CHMP2A in brain injury after cardiac arrest |
title_full | The balance between AIM2-associated inflammation and autophagy: the role of CHMP2A in brain injury after cardiac arrest |
title_fullStr | The balance between AIM2-associated inflammation and autophagy: the role of CHMP2A in brain injury after cardiac arrest |
title_full_unstemmed | The balance between AIM2-associated inflammation and autophagy: the role of CHMP2A in brain injury after cardiac arrest |
title_short | The balance between AIM2-associated inflammation and autophagy: the role of CHMP2A in brain injury after cardiac arrest |
title_sort | balance between aim2-associated inflammation and autophagy: the role of chmp2a in brain injury after cardiac arrest |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571899/ https://www.ncbi.nlm.nih.gov/pubmed/34740380 http://dx.doi.org/10.1186/s12974-021-02307-8 |
work_keys_str_mv | AT shaorongjiao thebalancebetweenaim2associatedinflammationandautophagytheroleofchmp2ainbraininjuryaftercardiacarrest AT wangxintao thebalancebetweenaim2associatedinflammationandautophagytheroleofchmp2ainbraininjuryaftercardiacarrest AT xutianhua thebalancebetweenaim2associatedinflammationandautophagytheroleofchmp2ainbraininjuryaftercardiacarrest AT xiayiyang thebalancebetweenaim2associatedinflammationandautophagytheroleofchmp2ainbraininjuryaftercardiacarrest AT cuiderong thebalancebetweenaim2associatedinflammationandautophagytheroleofchmp2ainbraininjuryaftercardiacarrest AT shaorongjiao balancebetweenaim2associatedinflammationandautophagytheroleofchmp2ainbraininjuryaftercardiacarrest AT wangxintao balancebetweenaim2associatedinflammationandautophagytheroleofchmp2ainbraininjuryaftercardiacarrest AT xutianhua balancebetweenaim2associatedinflammationandautophagytheroleofchmp2ainbraininjuryaftercardiacarrest AT xiayiyang balancebetweenaim2associatedinflammationandautophagytheroleofchmp2ainbraininjuryaftercardiacarrest AT cuiderong balancebetweenaim2associatedinflammationandautophagytheroleofchmp2ainbraininjuryaftercardiacarrest |