Cargando…
Chrom-Lasso: a lasso regression-based model to detect functional interactions using Hi-C data
Hi-C is a genome-wide assay based on Chromosome Conformation Capture and high-throughput sequencing to decipher 3D chromatin organization in the nucleus. However, computational methods to detect functional interactions utilizing Hi-C data face challenges including the correction for various sources...
Autores principales: | Lu, Jingzhe, Wang, Xu, Sun, Keyong, Lan, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8574949/ https://www.ncbi.nlm.nih.gov/pubmed/34013331 http://dx.doi.org/10.1093/bib/bbab181 |
Ejemplares similares
-
HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM
por: Liu, Tong, et al.
Publicado: (2023) -
HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases
por: Kobets, Victoria A, et al.
Publicado: (2023) -
scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
por: Zhu, Hao, et al.
Publicado: (2023) -
HiC1Dmetrics: framework to extract various one-dimensional features from chromosome structure data
por: Wang, Jiankang, et al.
Publicado: (2021) -
Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering
por: Zheng, Jiahao, et al.
Publicado: (2023)