Cargando…
Metformin attenuates hypothalamic inflammation via downregulation of RIPK1-independent microglial necroptosis in diet-induced obese mice
Necroptosis, a form of programmed cell death, accounts for many inflammations in a wide range of diseases. Diet-induced obesity is manifested by low-grade inflammation in the mediobasal hypothalamus (MBH), and microglia are implicated as critical responsive components for this process. Here, we demo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575871/ https://www.ncbi.nlm.nih.gov/pubmed/34750365 http://dx.doi.org/10.1038/s41420-021-00732-5 |
Sumario: | Necroptosis, a form of programmed cell death, accounts for many inflammations in a wide range of diseases. Diet-induced obesity is manifested by low-grade inflammation in the mediobasal hypothalamus (MBH), and microglia are implicated as critical responsive components for this process. Here, we demonstrate that microglial necroptosis plays a pivotal role in obesity-related hypothalamic inflammation, facilitating proinflammatory cytokine production, such as TNF-α and IL-1β. Treatment with the anti-diabetic drug metformin effectively reduces the obese phenotypes in the high-fat diet (HFD)-fed mice, attributing to remission of hypothalamic inflammation partly through repressing microglial necroptosis. Importantly, using the receptor-interacting protein kinase 1 inhibitor, necrostatin-1s, could not suppress the microglial inflammation nor prevent body weight gain in the obese mice, indicating that the microglial necroptosis is RIPK1-independent. Altogether, these findings offer new insights into hypothalamic inflammation in diet-induced obesity and provide a novel mechanism of action for metformin in obesity treatment. |
---|