Cargando…

Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein

SARS-CoV-2 and SARS-CoV are genetically related coronavirus and share the same cellular receptor ACE2. By replacing the VSV glycoprotein with the spikes (S) of SARS-CoV-2 and SARS-CoV, we generated two replication-competent recombinant viruses, rVSV-SARS-CoV-2 and rVSV-SARS-CoV. Using wild-type and...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hongyue, Zhang, Yuhang, Li, Dong, Deng, Yong-Qiang, Xu, Hongde, Zhao, Chaoyue, Liu, Jiandong, Wen, Dan, Zhao, Jianguo, Li, Yongchun, Wu, Yong, Liu, Shujun, Liu, Jiankai, Hao, Junfeng, Yuan, Fei, Duo, Shuguang, Qin, Cheng-Feng, Zheng, Aihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578532/
https://www.ncbi.nlm.nih.gov/pubmed/34759261
http://dx.doi.org/10.1038/s41392-021-00797-9
_version_ 1784596253002170368
author Li, Hongyue
Zhang, Yuhang
Li, Dong
Deng, Yong-Qiang
Xu, Hongde
Zhao, Chaoyue
Liu, Jiandong
Wen, Dan
Zhao, Jianguo
Li, Yongchun
Wu, Yong
Liu, Shujun
Liu, Jiankai
Hao, Junfeng
Yuan, Fei
Duo, Shuguang
Qin, Cheng-Feng
Zheng, Aihua
author_facet Li, Hongyue
Zhang, Yuhang
Li, Dong
Deng, Yong-Qiang
Xu, Hongde
Zhao, Chaoyue
Liu, Jiandong
Wen, Dan
Zhao, Jianguo
Li, Yongchun
Wu, Yong
Liu, Shujun
Liu, Jiankai
Hao, Junfeng
Yuan, Fei
Duo, Shuguang
Qin, Cheng-Feng
Zheng, Aihua
author_sort Li, Hongyue
collection PubMed
description SARS-CoV-2 and SARS-CoV are genetically related coronavirus and share the same cellular receptor ACE2. By replacing the VSV glycoprotein with the spikes (S) of SARS-CoV-2 and SARS-CoV, we generated two replication-competent recombinant viruses, rVSV-SARS-CoV-2 and rVSV-SARS-CoV. Using wild-type and human ACE2 (hACE2) knock-in mouse models, we found a single dose of rVSV-SARS-CoV could elicit strong humoral immune response via both intranasal (i.n.) and intramuscular (i.m.) routes. Despite the high genetic similarity between SARS-CoV-2 and SARS-CoV, no obvious cross-neutralizing activity was observed in the immunized mice sera. In macaques, neutralizing antibody (NAb) titers induced by one i.n. dose of rVSV-SARS-CoV-2 were eight-fold higher than those by a single i.m. dose. Thus, our data indicates that rVSV-SARS-CoV-2 might be suitable for i.n. administration instead of the traditional i.m. immunization in human. Because rVSV-SARS-CoV elicited significantly stronger NAb responses than rVSV-SARS-CoV-2 in a route-independent manner, we generated a chimeric antigen by replacing the receptor binding domain (RBD) of SARS-CoV S with that from the SARS-CoV-2. rVSV expressing the chimera (rVSV-SARS-CoV/2-RBD) induced significantly increased NAbs against SARS-CoV-2 in mice and macaques than rVSV-SARS-CoV-2, with a safe Th1-biased response. Serum immunized with rVSV-SARS-CoV/2-RBD showed no cross-reactivity with SARS-CoV. hACE2 mice receiving a single i.m. dose of either rVSV-SARS-CoV-2 or rVSV-SARS-CoV/2-RBD were fully protected against SARS-CoV-2 challenge without obvious lesions in the lungs. Our results suggest that transplantation of SARS-CoV-2 RBD into the S protein of SARS-CoV might be a promising antigen design for COVID-19 vaccines.
format Online
Article
Text
id pubmed-8578532
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85785322021-11-10 Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein Li, Hongyue Zhang, Yuhang Li, Dong Deng, Yong-Qiang Xu, Hongde Zhao, Chaoyue Liu, Jiandong Wen, Dan Zhao, Jianguo Li, Yongchun Wu, Yong Liu, Shujun Liu, Jiankai Hao, Junfeng Yuan, Fei Duo, Shuguang Qin, Cheng-Feng Zheng, Aihua Signal Transduct Target Ther Article SARS-CoV-2 and SARS-CoV are genetically related coronavirus and share the same cellular receptor ACE2. By replacing the VSV glycoprotein with the spikes (S) of SARS-CoV-2 and SARS-CoV, we generated two replication-competent recombinant viruses, rVSV-SARS-CoV-2 and rVSV-SARS-CoV. Using wild-type and human ACE2 (hACE2) knock-in mouse models, we found a single dose of rVSV-SARS-CoV could elicit strong humoral immune response via both intranasal (i.n.) and intramuscular (i.m.) routes. Despite the high genetic similarity between SARS-CoV-2 and SARS-CoV, no obvious cross-neutralizing activity was observed in the immunized mice sera. In macaques, neutralizing antibody (NAb) titers induced by one i.n. dose of rVSV-SARS-CoV-2 were eight-fold higher than those by a single i.m. dose. Thus, our data indicates that rVSV-SARS-CoV-2 might be suitable for i.n. administration instead of the traditional i.m. immunization in human. Because rVSV-SARS-CoV elicited significantly stronger NAb responses than rVSV-SARS-CoV-2 in a route-independent manner, we generated a chimeric antigen by replacing the receptor binding domain (RBD) of SARS-CoV S with that from the SARS-CoV-2. rVSV expressing the chimera (rVSV-SARS-CoV/2-RBD) induced significantly increased NAbs against SARS-CoV-2 in mice and macaques than rVSV-SARS-CoV-2, with a safe Th1-biased response. Serum immunized with rVSV-SARS-CoV/2-RBD showed no cross-reactivity with SARS-CoV. hACE2 mice receiving a single i.m. dose of either rVSV-SARS-CoV-2 or rVSV-SARS-CoV/2-RBD were fully protected against SARS-CoV-2 challenge without obvious lesions in the lungs. Our results suggest that transplantation of SARS-CoV-2 RBD into the S protein of SARS-CoV might be a promising antigen design for COVID-19 vaccines. Nature Publishing Group UK 2021-11-10 /pmc/articles/PMC8578532/ /pubmed/34759261 http://dx.doi.org/10.1038/s41392-021-00797-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Li, Hongyue
Zhang, Yuhang
Li, Dong
Deng, Yong-Qiang
Xu, Hongde
Zhao, Chaoyue
Liu, Jiandong
Wen, Dan
Zhao, Jianguo
Li, Yongchun
Wu, Yong
Liu, Shujun
Liu, Jiankai
Hao, Junfeng
Yuan, Fei
Duo, Shuguang
Qin, Cheng-Feng
Zheng, Aihua
Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein
title Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein
title_full Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein
title_fullStr Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein
title_full_unstemmed Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein
title_short Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein
title_sort enhanced protective immunity against sars-cov-2 elicited by a vsv vector expressing a chimeric spike protein
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578532/
https://www.ncbi.nlm.nih.gov/pubmed/34759261
http://dx.doi.org/10.1038/s41392-021-00797-9
work_keys_str_mv AT lihongyue enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT zhangyuhang enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT lidong enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT dengyongqiang enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT xuhongde enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT zhaochaoyue enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT liujiandong enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT wendan enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT zhaojianguo enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT liyongchun enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT wuyong enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT liushujun enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT liujiankai enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT haojunfeng enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT yuanfei enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT duoshuguang enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT qinchengfeng enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein
AT zhengaihua enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein