Cargando…
Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein
SARS-CoV-2 and SARS-CoV are genetically related coronavirus and share the same cellular receptor ACE2. By replacing the VSV glycoprotein with the spikes (S) of SARS-CoV-2 and SARS-CoV, we generated two replication-competent recombinant viruses, rVSV-SARS-CoV-2 and rVSV-SARS-CoV. Using wild-type and...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578532/ https://www.ncbi.nlm.nih.gov/pubmed/34759261 http://dx.doi.org/10.1038/s41392-021-00797-9 |
_version_ | 1784596253002170368 |
---|---|
author | Li, Hongyue Zhang, Yuhang Li, Dong Deng, Yong-Qiang Xu, Hongde Zhao, Chaoyue Liu, Jiandong Wen, Dan Zhao, Jianguo Li, Yongchun Wu, Yong Liu, Shujun Liu, Jiankai Hao, Junfeng Yuan, Fei Duo, Shuguang Qin, Cheng-Feng Zheng, Aihua |
author_facet | Li, Hongyue Zhang, Yuhang Li, Dong Deng, Yong-Qiang Xu, Hongde Zhao, Chaoyue Liu, Jiandong Wen, Dan Zhao, Jianguo Li, Yongchun Wu, Yong Liu, Shujun Liu, Jiankai Hao, Junfeng Yuan, Fei Duo, Shuguang Qin, Cheng-Feng Zheng, Aihua |
author_sort | Li, Hongyue |
collection | PubMed |
description | SARS-CoV-2 and SARS-CoV are genetically related coronavirus and share the same cellular receptor ACE2. By replacing the VSV glycoprotein with the spikes (S) of SARS-CoV-2 and SARS-CoV, we generated two replication-competent recombinant viruses, rVSV-SARS-CoV-2 and rVSV-SARS-CoV. Using wild-type and human ACE2 (hACE2) knock-in mouse models, we found a single dose of rVSV-SARS-CoV could elicit strong humoral immune response via both intranasal (i.n.) and intramuscular (i.m.) routes. Despite the high genetic similarity between SARS-CoV-2 and SARS-CoV, no obvious cross-neutralizing activity was observed in the immunized mice sera. In macaques, neutralizing antibody (NAb) titers induced by one i.n. dose of rVSV-SARS-CoV-2 were eight-fold higher than those by a single i.m. dose. Thus, our data indicates that rVSV-SARS-CoV-2 might be suitable for i.n. administration instead of the traditional i.m. immunization in human. Because rVSV-SARS-CoV elicited significantly stronger NAb responses than rVSV-SARS-CoV-2 in a route-independent manner, we generated a chimeric antigen by replacing the receptor binding domain (RBD) of SARS-CoV S with that from the SARS-CoV-2. rVSV expressing the chimera (rVSV-SARS-CoV/2-RBD) induced significantly increased NAbs against SARS-CoV-2 in mice and macaques than rVSV-SARS-CoV-2, with a safe Th1-biased response. Serum immunized with rVSV-SARS-CoV/2-RBD showed no cross-reactivity with SARS-CoV. hACE2 mice receiving a single i.m. dose of either rVSV-SARS-CoV-2 or rVSV-SARS-CoV/2-RBD were fully protected against SARS-CoV-2 challenge without obvious lesions in the lungs. Our results suggest that transplantation of SARS-CoV-2 RBD into the S protein of SARS-CoV might be a promising antigen design for COVID-19 vaccines. |
format | Online Article Text |
id | pubmed-8578532 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-85785322021-11-10 Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein Li, Hongyue Zhang, Yuhang Li, Dong Deng, Yong-Qiang Xu, Hongde Zhao, Chaoyue Liu, Jiandong Wen, Dan Zhao, Jianguo Li, Yongchun Wu, Yong Liu, Shujun Liu, Jiankai Hao, Junfeng Yuan, Fei Duo, Shuguang Qin, Cheng-Feng Zheng, Aihua Signal Transduct Target Ther Article SARS-CoV-2 and SARS-CoV are genetically related coronavirus and share the same cellular receptor ACE2. By replacing the VSV glycoprotein with the spikes (S) of SARS-CoV-2 and SARS-CoV, we generated two replication-competent recombinant viruses, rVSV-SARS-CoV-2 and rVSV-SARS-CoV. Using wild-type and human ACE2 (hACE2) knock-in mouse models, we found a single dose of rVSV-SARS-CoV could elicit strong humoral immune response via both intranasal (i.n.) and intramuscular (i.m.) routes. Despite the high genetic similarity between SARS-CoV-2 and SARS-CoV, no obvious cross-neutralizing activity was observed in the immunized mice sera. In macaques, neutralizing antibody (NAb) titers induced by one i.n. dose of rVSV-SARS-CoV-2 were eight-fold higher than those by a single i.m. dose. Thus, our data indicates that rVSV-SARS-CoV-2 might be suitable for i.n. administration instead of the traditional i.m. immunization in human. Because rVSV-SARS-CoV elicited significantly stronger NAb responses than rVSV-SARS-CoV-2 in a route-independent manner, we generated a chimeric antigen by replacing the receptor binding domain (RBD) of SARS-CoV S with that from the SARS-CoV-2. rVSV expressing the chimera (rVSV-SARS-CoV/2-RBD) induced significantly increased NAbs against SARS-CoV-2 in mice and macaques than rVSV-SARS-CoV-2, with a safe Th1-biased response. Serum immunized with rVSV-SARS-CoV/2-RBD showed no cross-reactivity with SARS-CoV. hACE2 mice receiving a single i.m. dose of either rVSV-SARS-CoV-2 or rVSV-SARS-CoV/2-RBD were fully protected against SARS-CoV-2 challenge without obvious lesions in the lungs. Our results suggest that transplantation of SARS-CoV-2 RBD into the S protein of SARS-CoV might be a promising antigen design for COVID-19 vaccines. Nature Publishing Group UK 2021-11-10 /pmc/articles/PMC8578532/ /pubmed/34759261 http://dx.doi.org/10.1038/s41392-021-00797-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Li, Hongyue Zhang, Yuhang Li, Dong Deng, Yong-Qiang Xu, Hongde Zhao, Chaoyue Liu, Jiandong Wen, Dan Zhao, Jianguo Li, Yongchun Wu, Yong Liu, Shujun Liu, Jiankai Hao, Junfeng Yuan, Fei Duo, Shuguang Qin, Cheng-Feng Zheng, Aihua Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein |
title | Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein |
title_full | Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein |
title_fullStr | Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein |
title_full_unstemmed | Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein |
title_short | Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein |
title_sort | enhanced protective immunity against sars-cov-2 elicited by a vsv vector expressing a chimeric spike protein |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578532/ https://www.ncbi.nlm.nih.gov/pubmed/34759261 http://dx.doi.org/10.1038/s41392-021-00797-9 |
work_keys_str_mv | AT lihongyue enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT zhangyuhang enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT lidong enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT dengyongqiang enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT xuhongde enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT zhaochaoyue enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT liujiandong enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT wendan enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT zhaojianguo enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT liyongchun enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT wuyong enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT liushujun enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT liujiankai enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT haojunfeng enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT yuanfei enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT duoshuguang enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT qinchengfeng enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein AT zhengaihua enhancedprotectiveimmunityagainstsarscov2elicitedbyavsvvectorexpressingachimericspikeprotein |