Cargando…
Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play an important role in the development, maintenance, and function of the brain. Dietary supplementation of n-3 PUFAs in neurological diseases has been a subject of particular interest in preventing cognitive deficits, and particularly in age-related...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584305/ https://www.ncbi.nlm.nih.gov/pubmed/34769291 http://dx.doi.org/10.3390/ijms222111859 |
_version_ | 1784597417116565504 |
---|---|
author | Passeri, Elodie Elkhoury, Kamil Jiménez Garavito, Maria Camila Desor, Frédéric Huguet, Marion Soligot-Hognon, Claire Linder, Michel Malaplate, Catherine Yen, Frances T. Arab-Tehrany, Elmira |
author_facet | Passeri, Elodie Elkhoury, Kamil Jiménez Garavito, Maria Camila Desor, Frédéric Huguet, Marion Soligot-Hognon, Claire Linder, Michel Malaplate, Catherine Yen, Frances T. Arab-Tehrany, Elmira |
author_sort | Passeri, Elodie |
collection | PubMed |
description | Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play an important role in the development, maintenance, and function of the brain. Dietary supplementation of n-3 PUFAs in neurological diseases has been a subject of particular interest in preventing cognitive deficits, and particularly in age-related neurodegeneration. Developing strategies for the efficient delivery of these lipids to the brain has presented a challenge in recent years. We recently reported the preparation of n-3 PUFA-rich nanoliposomes (NLs) from salmon lecithin, and demonstrated their neurotrophic effects in rat embryo cortical neurons. The objective of this study was to assess the ability of these NLs to deliver PUFAs in cellulo and in vivo (in mice). NLs were prepared using salmon lecithin rich in n-3 PUFAs (29.13%), and characterized with an average size of 107.90 ± 0.35 nm, a polydispersity index of 0.25 ± 0.01, and a negative particle-surface electrical charge (−50.4 ± 0.2 mV). Incubation of rat embryo cortical neurons with NLs led to a significant increase in docosahexaenoic acid (DHA) (51.5%, p < 0.01), as well as palmitic acid, and a small decrease in oleic acid after 72 h (12.2%, p < 0.05). Twenty mice on a standard diet received oral administration of NLs (12 mg/mouse/day; 5 days per week) for 8 weeks. Fatty acid profiles obtained via gas chromatography revealed significant increases in cortical levels of saturated, monounsaturated, and n-3 (docosahexaenoic acid,) and n-6 (docosapentaenoic acid and arachidonic acid) PUFAs. This was not the case for the hippocampus or in the liver. There were no effects on plasma lipid levels, and daily monitoring confirmed NL biocompatibility. These results demonstrate that NLs can be used for delivery of PUFAs to the brain. This study opens new research possibilities in the development of preventive as well as therapeutic strategies for age-related neurodegeneration. |
format | Online Article Text |
id | pubmed-8584305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85843052021-11-12 Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice Passeri, Elodie Elkhoury, Kamil Jiménez Garavito, Maria Camila Desor, Frédéric Huguet, Marion Soligot-Hognon, Claire Linder, Michel Malaplate, Catherine Yen, Frances T. Arab-Tehrany, Elmira Int J Mol Sci Article Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play an important role in the development, maintenance, and function of the brain. Dietary supplementation of n-3 PUFAs in neurological diseases has been a subject of particular interest in preventing cognitive deficits, and particularly in age-related neurodegeneration. Developing strategies for the efficient delivery of these lipids to the brain has presented a challenge in recent years. We recently reported the preparation of n-3 PUFA-rich nanoliposomes (NLs) from salmon lecithin, and demonstrated their neurotrophic effects in rat embryo cortical neurons. The objective of this study was to assess the ability of these NLs to deliver PUFAs in cellulo and in vivo (in mice). NLs were prepared using salmon lecithin rich in n-3 PUFAs (29.13%), and characterized with an average size of 107.90 ± 0.35 nm, a polydispersity index of 0.25 ± 0.01, and a negative particle-surface electrical charge (−50.4 ± 0.2 mV). Incubation of rat embryo cortical neurons with NLs led to a significant increase in docosahexaenoic acid (DHA) (51.5%, p < 0.01), as well as palmitic acid, and a small decrease in oleic acid after 72 h (12.2%, p < 0.05). Twenty mice on a standard diet received oral administration of NLs (12 mg/mouse/day; 5 days per week) for 8 weeks. Fatty acid profiles obtained via gas chromatography revealed significant increases in cortical levels of saturated, monounsaturated, and n-3 (docosahexaenoic acid,) and n-6 (docosapentaenoic acid and arachidonic acid) PUFAs. This was not the case for the hippocampus or in the liver. There were no effects on plasma lipid levels, and daily monitoring confirmed NL biocompatibility. These results demonstrate that NLs can be used for delivery of PUFAs to the brain. This study opens new research possibilities in the development of preventive as well as therapeutic strategies for age-related neurodegeneration. MDPI 2021-11-01 /pmc/articles/PMC8584305/ /pubmed/34769291 http://dx.doi.org/10.3390/ijms222111859 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Passeri, Elodie Elkhoury, Kamil Jiménez Garavito, Maria Camila Desor, Frédéric Huguet, Marion Soligot-Hognon, Claire Linder, Michel Malaplate, Catherine Yen, Frances T. Arab-Tehrany, Elmira Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice |
title | Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice |
title_full | Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice |
title_fullStr | Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice |
title_full_unstemmed | Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice |
title_short | Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice |
title_sort | use of active salmon-lecithin nanoliposomes to increase polyunsaturated fatty acid bioavailability in cortical neurons and mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584305/ https://www.ncbi.nlm.nih.gov/pubmed/34769291 http://dx.doi.org/10.3390/ijms222111859 |
work_keys_str_mv | AT passerielodie useofactivesalmonlecithinnanoliposomestoincreasepolyunsaturatedfattyacidbioavailabilityincorticalneuronsandmice AT elkhourykamil useofactivesalmonlecithinnanoliposomestoincreasepolyunsaturatedfattyacidbioavailabilityincorticalneuronsandmice AT jimenezgaravitomariacamila useofactivesalmonlecithinnanoliposomestoincreasepolyunsaturatedfattyacidbioavailabilityincorticalneuronsandmice AT desorfrederic useofactivesalmonlecithinnanoliposomestoincreasepolyunsaturatedfattyacidbioavailabilityincorticalneuronsandmice AT huguetmarion useofactivesalmonlecithinnanoliposomestoincreasepolyunsaturatedfattyacidbioavailabilityincorticalneuronsandmice AT soligothognonclaire useofactivesalmonlecithinnanoliposomestoincreasepolyunsaturatedfattyacidbioavailabilityincorticalneuronsandmice AT lindermichel useofactivesalmonlecithinnanoliposomestoincreasepolyunsaturatedfattyacidbioavailabilityincorticalneuronsandmice AT malaplatecatherine useofactivesalmonlecithinnanoliposomestoincreasepolyunsaturatedfattyacidbioavailabilityincorticalneuronsandmice AT yenfrancest useofactivesalmonlecithinnanoliposomestoincreasepolyunsaturatedfattyacidbioavailabilityincorticalneuronsandmice AT arabtehranyelmira useofactivesalmonlecithinnanoliposomestoincreasepolyunsaturatedfattyacidbioavailabilityincorticalneuronsandmice |