Cargando…
Joint Soft–Hard Attention for Self-Supervised Monocular Depth Estimation
In recent years, self-supervised monocular depth estimation has gained popularity among researchers because it uses only a single camera at a much lower cost than the direct use of laser sensors to acquire depth. Although monocular self-supervised methods can obtain dense depths, the estimation accu...
Autores principales: | Fan, Chao, Yin, Zhenyu, Xu, Fulong, Chai, Anying, Zhang, Feiqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588100/ https://www.ncbi.nlm.nih.gov/pubmed/34770263 http://dx.doi.org/10.3390/s21216956 |
Ejemplares similares
-
Online supervised attention-based recurrent depth estimation from monocular video
por: Maslov, Dmitrii, et al.
Publicado: (2020) -
Monocular Depth Estimation with Self-Supervised Learning for Vineyard Unmanned Agricultural Vehicle
por: Cui, Xue-Zhi, et al.
Publicado: (2022) -
Self-supervised monocular depth estimation for high field of view colonoscopy cameras
por: Mathew, Alwyn, et al.
Publicado: (2023) -
Monocular Depth Estimation with Joint Attention Feature Distillation and Wavelet-Based Loss Function
por: Liu, Peng, et al.
Publicado: (2020) -
Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
por: Hirohata, Yasuhide, et al.
Publicado: (2023)