Cargando…
Intelligent host engineering for metabolic flux optimisation in biotechnology
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a ‘search space’ of possible sequences of some 20(N). Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically space...
Autores principales: | Munro, Lachlan J., Kell, Douglas B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589332/ https://www.ncbi.nlm.nih.gov/pubmed/34673920 http://dx.doi.org/10.1042/BCJ20210535 |
Ejemplares similares
-
Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently
por: Kell, Douglas B., et al.
Publicado: (2020) -
Sustainable metabolic engineering for sustainability optimisation of industrial biotechnology
por: Stalidzans, Egils, et al.
Publicado: (2021) -
Combining graph and flux-based structures to decipher phenotypic essential metabolites within metabolic networks
por: Laniau, Julie, et al.
Publicado: (2017) -
Isolation and transcriptome analysis of a biotechnologically promising Black Sea protist, Thraustochytrium aureum ssp. strugatskii
por: Konstantinov, Dmitrii K., et al.
Publicado: (2022) -
In silico engineering of Pseudomonas metabolism reveals new biomarkers for increased biosurfactant production
por: Occhipinti, Annalisa, et al.
Publicado: (2018)