Cargando…
Immunoaffinity purification of endogenous proteins from S. cerevisiae for post-translational modification and protein interaction analysis
Protein regulation by post-translational modifications and protein-protein interactions is critical to controlling molecular pathways. Here, we describe an immunoaffinity purification approach in Saccharomyces cerevisiae. The protocol uses an endogenously-expressed epitope-tagged protein and can be...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593661/ https://www.ncbi.nlm.nih.gov/pubmed/34816128 http://dx.doi.org/10.1016/j.xpro.2021.100945 |
Sumario: | Protein regulation by post-translational modifications and protein-protein interactions is critical to controlling molecular pathways. Here, we describe an immunoaffinity purification approach in Saccharomyces cerevisiae. The protocol uses an endogenously-expressed epitope-tagged protein and can be applied to the identification of post-translational modifications or protein binding partners. The lysine methyltransferase Set5 is used as an example here to purify phosphorylated Set5 and identify phosphosites; however, this approach can be applied to a diverse set of proteins in yeast. For complete details on the use and execution of this protocol, please refer to Jaiswal et al. (2020). |
---|