Cargando…

Low-bias ncRNA libraries using ordered two-template relay: Serial template jumping by a modified retroelement reverse transcriptase

Selfish, non-long terminal repeat (non-LTR) retroelements and mobile group II introns encode reverse transcriptases (RTs) that can initiate DNA synthesis without substantial base pairing of primer and template. Biochemical characterization of these enzymes has been limited by recombinant expression...

Descripción completa

Detalles Bibliográficos
Autores principales: Upton, Heather E., Ferguson, Lucas, Temoche-Diaz, Morayma M., Liu, Xiao-Man, Pimentel, Sydney C., Ingolia, Nicholas T., Schekman, Randy, Collins, Kathleen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594491/
https://www.ncbi.nlm.nih.gov/pubmed/34649994
http://dx.doi.org/10.1073/pnas.2107900118
Descripción
Sumario:Selfish, non-long terminal repeat (non-LTR) retroelements and mobile group II introns encode reverse transcriptases (RTs) that can initiate DNA synthesis without substantial base pairing of primer and template. Biochemical characterization of these enzymes has been limited by recombinant expression challenges, hampering understanding of their properties and the possible exploitation of their properties for research and biotechnology. We investigated the activities of representative RTs using a modified non-LTR RT from Bombyx mori and a group II intron RT from Eubacterium rectale. Only the non-LTR RT supported robust and serial template jumping, producing one complementary DNA (cDNA) from several templates each copied end to end. We also discovered an unexpected terminal deoxynucleotidyl transferase activity of the RTs that adds nucleotide(s) of choice to 3′ ends of single- and/or double-stranded RNA or DNA. Combining these two types of activity with additional insights about nontemplated nucleotide additions to duplexed cDNA product, we developed a streamlined protocol for fusion of next-generation sequencing adaptors to both cDNA ends in a single RT reaction. When benchmarked using a reference pool of microRNAs (miRNAs), library production by Ordered Two-Template Relay (OTTR) using recombinant non-LTR retroelement RT outperformed all commercially available kits and rivaled the low bias of technically demanding home-brew protocols. We applied OTTR to inventory RNAs purified from extracellular vesicles, identifying miRNAs as well as myriad other noncoding RNAs (ncRNAs) and ncRNA fragments. Our results establish the utility of OTTR for automation-friendly, low-bias, end-to-end RNA sequence inventories of complex ncRNA samples.