Cargando…

Can a virtual microbiology simulation be as effective as the traditional Wetlab for pharmacy student education?

BACKGROUND: Pharmacy practice education requires the development of proficiencies and an understanding of clinical microbiology. Learning in this area could be delivered using practical laboratory exercises, or potentially, simulation-based education. Simulation has previously successfully enhanced...

Descripción completa

Detalles Bibliográficos
Autores principales: Baumann-Birkbeck, L., Anoopkumar-Dukie, S., Khan, S. A., Cheesman, M. J., O’Donoghue, M., Grant, G. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596346/
https://www.ncbi.nlm.nih.gov/pubmed/34789233
http://dx.doi.org/10.1186/s12909-021-03000-3
Descripción
Sumario:BACKGROUND: Pharmacy practice education requires the development of proficiencies and an understanding of clinical microbiology. Learning in this area could be delivered using practical laboratory exercises, or potentially, simulation-based education. Simulation has previously successfully enhanced learning in health professional education. The current global climate due to COVID-19 has further highlighted the important role of technology-enhanced learning in delivering outcomes that meet the requisite learning objectives of a course. The aim of the present study was to compare the impact of a commercially available virtual microbiology simulation (VUMIE™) with a traditional wet laboratory (wetlab) on learner knowledge, skills and confidence in a second-year integrated pharmacotherapeutics course for Bachelor of Pharmacy students. METHODS: A randomised, crossover study was employed to determine whether the simulation intervention (VUMIE™) improves learning outcomes (knowledge, skills and confidence) of pharmacy students, when compared to a traditional wetlab intervention. Each student completed three 1–2 h length sessions, for both the wetlab and VUMIE™ interventions (6 sessions total). Data was collected using surveys deployed at baseline (pre-interventions), post-intervention 1 or 2 (VUMIE™ or wetlab) and endpoint (post-interventions 1 and 2). Statistical analysis was conducted using SPSS Statistics 25 and Instat™ software. RESULTS: Response rates were approximately 50% at initial survey and approximately 25% at endpoint survey. VUMIE™ produced higher post-intervention knowledge scores for the multiple-choice questions compared to the wetlab, however, the highest score was achieved at endpoint. Both interventions produced statistically significant differences for mean scores compared to baseline (pre-VUMIE™ and wetlab) across the domains of knowledge, skills and confidence. VUMIE™ produced higher post-intervention mean scores for knowledge, skills and confidence compared to post-intervention mean scores for the wetlab, however there was no statistical significance between the mean score for the two interventions, thus the VUMIE™ activity produced learning outcomes comparable to the wetlab activity. CONCLUSION: These findings suggest VUMIE™ provides similar effects on students’ knowledge, skills, and confidence as a wetlab. The simulation’s implementation was not cost-prohibitive, provided students with a physically and psychologically safe learning environment, and the benefit of being able to repeat activities, supporting deliberate practice.