Cargando…

Direct Evidence on the Mechanism of Methane Conversion under Non‐oxidative Conditions over Iron‐modified Silica: The Role of Propargyl Radicals Unveiled

Radical‐mediated gas‐phase reactions play an important role in the conversion of methane under non‐oxidative conditions into olefins and aromatics over iron‐modified silica catalysts. Herein, we use operando photoelectron photoion coincidence spectroscopy to disentangle the elusive C(2+) radical int...

Descripción completa

Detalles Bibliográficos
Autores principales: Puente‐Urbina, Allen, Pan, Zeyou, Paunović, Vladimir, Šot, Petr, Hemberger, Patrick, van Bokhoven, Jeroen Anton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596584/
https://www.ncbi.nlm.nih.gov/pubmed/34459534
http://dx.doi.org/10.1002/anie.202107553
Descripción
Sumario:Radical‐mediated gas‐phase reactions play an important role in the conversion of methane under non‐oxidative conditions into olefins and aromatics over iron‐modified silica catalysts. Herein, we use operando photoelectron photoion coincidence spectroscopy to disentangle the elusive C(2+) radical intermediates participating in the complex gas‐phase reaction network. Our experiments pinpoint different C(2)‐C(5) radical species that allow for a stepwise growth of the hydrocarbon chains. Propargyl radicals (H(2)C−C≡C−H) are identified as essential precursors for the formation of aromatics, which then contribute to the formation of heavier hydrocarbon products via hydrogen abstraction–acetylene addition routes (HACA mechanism). These results provide comprehensive mechanistic insights that are relevant for the development of methane valorization processes.