Cargando…

Rational Design of a Confacial Pentaoctahedron: Anisotropic Exchange in a Linear Zn(II)Fe(III)Fe(III)Fe(III)Zn(II) Complex

The first confacial pentaoctahedron comprised of transition metal ions namely Zn(II)Fe(III) (A)Fe(III) (B)Fe(III) (A)Zn(II) has been synthesized by using a dinucleating nonadentate ligand. The face‐sharing bridging mode enforces short Zn(II)⋅⋅⋅Fe(III) (A) and Fe(III) (A)⋅⋅⋅Fe(III) (B) distances of 2...

Descripción completa

Detalles Bibliográficos
Autores principales: Walleck, Stephan, Atanasov, Mihail, Schnack, Jürgen, Bill, Eckhard, Stammler, Anja, Bögge, Hartmut, Glaser, Thorsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596665/
https://www.ncbi.nlm.nih.gov/pubmed/34427372
http://dx.doi.org/10.1002/chem.202102572
_version_ 1784600436307656704
author Walleck, Stephan
Atanasov, Mihail
Schnack, Jürgen
Bill, Eckhard
Stammler, Anja
Bögge, Hartmut
Glaser, Thorsten
author_facet Walleck, Stephan
Atanasov, Mihail
Schnack, Jürgen
Bill, Eckhard
Stammler, Anja
Bögge, Hartmut
Glaser, Thorsten
author_sort Walleck, Stephan
collection PubMed
description The first confacial pentaoctahedron comprised of transition metal ions namely Zn(II)Fe(III) (A)Fe(III) (B)Fe(III) (A)Zn(II) has been synthesized by using a dinucleating nonadentate ligand. The face‐sharing bridging mode enforces short Zn(II)⋅⋅⋅Fe(III) (A) and Fe(III) (A)⋅⋅⋅Fe(III) (B) distances of 2.83 and 2.72 Å, respectively. Ab‐initio CASSCF/NEVPT2 calculations provide significant negative zero‐field splittings for Fe(III) (A) and Fe(III) (B) with |D (A)|>|D (B)| with the main component along the C (3) axis. Hence, a spin‐Hamiltonian comprised of anisotropic exchange, zero‐field, and Zeeman term was employed. This allowed by following the boundary conditions from the theoretical results the simulation in a theory‐guided parameter determination with J (xy)=+0.37, J (z)=−0.32, D (A)=−1.21, E (A)=−0.24, D (B)=−0.35, and E (B)=−0.01 cm(−1) supported by simulations of high‐field magnetic Mössbauer spectra recorded at 2 K. The weak but ferromagnetic Fe(III) (A)Fe(III) (B) interaction arises from the small bridging angle of 84.8° being at the switch from anti‐ to ferromagnetic for the face‐sharing bridging mode.
format Online
Article
Text
id pubmed-8596665
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-85966652021-11-22 Rational Design of a Confacial Pentaoctahedron: Anisotropic Exchange in a Linear Zn(II)Fe(III)Fe(III)Fe(III)Zn(II) Complex Walleck, Stephan Atanasov, Mihail Schnack, Jürgen Bill, Eckhard Stammler, Anja Bögge, Hartmut Glaser, Thorsten Chemistry Full Papers The first confacial pentaoctahedron comprised of transition metal ions namely Zn(II)Fe(III) (A)Fe(III) (B)Fe(III) (A)Zn(II) has been synthesized by using a dinucleating nonadentate ligand. The face‐sharing bridging mode enforces short Zn(II)⋅⋅⋅Fe(III) (A) and Fe(III) (A)⋅⋅⋅Fe(III) (B) distances of 2.83 and 2.72 Å, respectively. Ab‐initio CASSCF/NEVPT2 calculations provide significant negative zero‐field splittings for Fe(III) (A) and Fe(III) (B) with |D (A)|>|D (B)| with the main component along the C (3) axis. Hence, a spin‐Hamiltonian comprised of anisotropic exchange, zero‐field, and Zeeman term was employed. This allowed by following the boundary conditions from the theoretical results the simulation in a theory‐guided parameter determination with J (xy)=+0.37, J (z)=−0.32, D (A)=−1.21, E (A)=−0.24, D (B)=−0.35, and E (B)=−0.01 cm(−1) supported by simulations of high‐field magnetic Mössbauer spectra recorded at 2 K. The weak but ferromagnetic Fe(III) (A)Fe(III) (B) interaction arises from the small bridging angle of 84.8° being at the switch from anti‐ to ferromagnetic for the face‐sharing bridging mode. John Wiley and Sons Inc. 2021-10-04 2021-11-02 /pmc/articles/PMC8596665/ /pubmed/34427372 http://dx.doi.org/10.1002/chem.202102572 Text en © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Full Papers
Walleck, Stephan
Atanasov, Mihail
Schnack, Jürgen
Bill, Eckhard
Stammler, Anja
Bögge, Hartmut
Glaser, Thorsten
Rational Design of a Confacial Pentaoctahedron: Anisotropic Exchange in a Linear Zn(II)Fe(III)Fe(III)Fe(III)Zn(II) Complex
title Rational Design of a Confacial Pentaoctahedron: Anisotropic Exchange in a Linear Zn(II)Fe(III)Fe(III)Fe(III)Zn(II) Complex
title_full Rational Design of a Confacial Pentaoctahedron: Anisotropic Exchange in a Linear Zn(II)Fe(III)Fe(III)Fe(III)Zn(II) Complex
title_fullStr Rational Design of a Confacial Pentaoctahedron: Anisotropic Exchange in a Linear Zn(II)Fe(III)Fe(III)Fe(III)Zn(II) Complex
title_full_unstemmed Rational Design of a Confacial Pentaoctahedron: Anisotropic Exchange in a Linear Zn(II)Fe(III)Fe(III)Fe(III)Zn(II) Complex
title_short Rational Design of a Confacial Pentaoctahedron: Anisotropic Exchange in a Linear Zn(II)Fe(III)Fe(III)Fe(III)Zn(II) Complex
title_sort rational design of a confacial pentaoctahedron: anisotropic exchange in a linear zn(ii)fe(iii)fe(iii)fe(iii)zn(ii) complex
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596665/
https://www.ncbi.nlm.nih.gov/pubmed/34427372
http://dx.doi.org/10.1002/chem.202102572
work_keys_str_mv AT walleckstephan rationaldesignofaconfacialpentaoctahedronanisotropicexchangeinalinearzniifeiiifeiiifeiiizniicomplex
AT atanasovmihail rationaldesignofaconfacialpentaoctahedronanisotropicexchangeinalinearzniifeiiifeiiifeiiizniicomplex
AT schnackjurgen rationaldesignofaconfacialpentaoctahedronanisotropicexchangeinalinearzniifeiiifeiiifeiiizniicomplex
AT billeckhard rationaldesignofaconfacialpentaoctahedronanisotropicexchangeinalinearzniifeiiifeiiifeiiizniicomplex
AT stammleranja rationaldesignofaconfacialpentaoctahedronanisotropicexchangeinalinearzniifeiiifeiiifeiiizniicomplex
AT boggehartmut rationaldesignofaconfacialpentaoctahedronanisotropicexchangeinalinearzniifeiiifeiiifeiiizniicomplex
AT glaserthorsten rationaldesignofaconfacialpentaoctahedronanisotropicexchangeinalinearzniifeiiifeiiifeiiizniicomplex