Cargando…
Extending approximate Bayesian computation with supervised machine learning to infer demographic history from genetic polymorphisms using DIYABC Random Forest
Simulation‐based methods such as approximate Bayesian computation (ABC) are well‐adapted to the analysis of complex scenarios of populations and species genetic history. In this context, supervised machine learning (SML) methods provide attractive statistical solutions to conduct efficient inference...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596733/ https://www.ncbi.nlm.nih.gov/pubmed/33950563 http://dx.doi.org/10.1111/1755-0998.13413 |