Cargando…

Investigating molecular mechanisms of 2A-stimulated ribosomal pausing and frameshifting in Theilovirus

The 2A protein of Theiler's murine encephalomyelitis virus (TMEV) acts as a switch to stimulate programmed –1 ribosomal frameshifting (PRF) during infection. Here, we present the X-ray crystal structure of TMEV 2A and define how it recognises the stimulatory RNA element. We demonstrate a critic...

Descripción completa

Detalles Bibliográficos
Autores principales: Hill, Chris H, Cook, Georgia M, Napthine, Sawsan, Kibe, Anuja, Brown, Katherine, Caliskan, Neva, Firth, Andrew E, Graham, Stephen C, Brierley, Ian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8599813/
https://www.ncbi.nlm.nih.gov/pubmed/34751406
http://dx.doi.org/10.1093/nar/gkab969
Descripción
Sumario:The 2A protein of Theiler's murine encephalomyelitis virus (TMEV) acts as a switch to stimulate programmed –1 ribosomal frameshifting (PRF) during infection. Here, we present the X-ray crystal structure of TMEV 2A and define how it recognises the stimulatory RNA element. We demonstrate a critical role for bases upstream of the originally predicted stem–loop, providing evidence for a pseudoknot-like conformation and suggesting that the recognition of this pseudoknot by beta-shell proteins is a conserved feature in cardioviruses. Through examination of PRF in TMEV-infected cells by ribosome profiling, we identify a series of ribosomal pauses around the site of PRF induced by the 2A-pseudoknot complex. Careful normalisation of ribosomal profiling data with a 2A knockout virus facilitated the identification, through disome analysis, of ribosome stacking at the TMEV frameshifting signal. These experiments provide unparalleled detail of the molecular mechanisms underpinning Theilovirus protein-stimulated frameshifting.